Publications by authors named "Amarnath Talasila"

The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4.

View Article and Find Full Text PDF

Objective: Atherosclerosis, the cause of 50% of deaths in westernized societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local proinflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response.

View Article and Find Full Text PDF

Objective: Myocardin, a potent transcriptional coactivator of serum response factor, is involved in vascular development and promotes a contractile smooth muscle phenotype. Myocardin levels are reduced during vascular injury, in association with phenotypic switching of smooth muscle cells (SMCs). However, the direct role of myocardin in vascular disease is unclear.

View Article and Find Full Text PDF

Background: Myocardin is thought to have a key role in smooth muscle cell (SMC) development by acting on CArG-dependent genes. However, it is unclear whether myocardin-induced SMC maturation and increases in agonist-induced calcium signalling are also associated with increases in the expression of non-CArG-dependent SMC-specific genes. Moreover, it is unknown whether myocardin promotes SMC development from human embryonic stem cells.

View Article and Find Full Text PDF

Cardiac hypertrophy is associated with profound remodeling of Ca(2+) signaling pathways. During the early, compensated stages of hypertrophy, Ca(2+) fluxes may be enhanced to facilitate greater contraction, whereas as the hypertrophic heart decompensates, Ca(2+) homeostatic mechanisms are dysregulated leading to decreased contractility, arrhythmia and death. Although ryanodine receptor Ca(2+) release channels (RyR) on the sarcoplasmic reticulum (SR) intracellular Ca(2+) store are primarily responsible for the Ca(2+) flux that induces myocyte contraction, a role for Ca(2+) release via the inositol 1,4,5-trisphosphate receptor (InsP(3)R) in cardiac physiology has also emerged.

View Article and Find Full Text PDF

Background And Purpose: Little is known about P2Y receptors in cardiac fibroblasts, which represent the predominant cell type in the heart and differentiate into myofibroblasts under certain conditions. Therefore, we have characterized the phenotype of the cells and the different P2Y receptors at the expression and functional levels in neonatal rat non-cardiomyocytes.

Experimental Approach: Non-cardiomyocyte phenotype was determined by confocal microscopy by using discoidin domain receptor 2, alpha-actin and desmin antibodies.

View Article and Find Full Text PDF

Ca(2+) elevations are fundamental to cardiac physiology-stimulating contraction and regulating the gene transcription that underlies hypertrophy. How Ca(2+) specifically controls gene transcription on the background of the rhythmic Ca(2+) increases required for contraction is not fully understood. Here we identify a hypertrophy-signaling module in cardiac myocytes that explains how Ca(2+) discretely regulates myocyte hypertrophy and contraction.

View Article and Find Full Text PDF