Ultraviolet (UV) photodetectors (PDs) are essential for various applications, but traditional materials face challenges in cost, fabrication, and performance. This study introduces dimethylamine bismuth iodide (DMABI) as a promising lead-free perovskite for UV PDs, particularly in the UVC region. DMABI demonstrates exceptional device parameters, including an ultralow dark current of 0.
View Article and Find Full Text PDFThis study introduces a novel strategy for developing reversible thermochromic fluorescent films by precisely controlling the nanoscale proximity of boron nitride quantum dots and curcumin molecules within a poly(3-hydroxybutyrate) matrix. The synergistic interaction and Förster resonance energy transfer between these fluorophores result in an energy transfer efficiency of ∼94%. This approach enables tunable color changes in response to temperature variations, governed by the segmental mobility of polymer chains.
View Article and Find Full Text PDFThree-dimensional (3D) halide perovskites (HPs) are in the spotlight of materials science research due to their excellent photonic and electronic properties suitable for functional device applications. However, the intrinsic instability of these materials stands as a hurdle in the way to their commercialization. Recently, two-dimensional (2D) HPs have emerged as an alternative to 3D perovskites, thanks to their excellent stability and tunable optoelectronic properties.
View Article and Find Full Text PDF