Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants.
View Article and Find Full Text PDFThe leaves of C(4) plants possess a superior metabolic efficiency not only in terms of photosynthetic carbon assimilation, but also in terms of inorganic nitrogen assimilation, when compared to C(3)plants. In vivo nitrate assimilation efficiency of leaves is dependent on light, but the obligatory presence of light has been debated and its role remains confounded. This problem has not been addressed from the standpoint of the C(3) vs.
View Article and Find Full Text PDF