High-throughput sequencing technologies and innovative bioinformatics tools discovered that most of the genome is transcribed into RNA. However, only a fraction of the RNAs in cell translates into proteins, while the majority of them are categorized as noncoding RNAs (ncRNAs). The ncRNAs with more than 200 nt without protein-coding ability are termed long noncoding RNAs (lncRNAs).
View Article and Find Full Text PDFExtracellular vesicles (EVs) derived from bone progenitor cells are advantageous as cell-free and non-immunogenic cargo delivery vehicles. In this study, EVs are isolated from MC3T3-E1 cells before (GM-EVs) and after mineralization for 7 and 14 days (DM-EVs). It was observed that DM-EVs accelerate the process of differentiation in recipient cells more prominently.
View Article and Find Full Text PDFLocalization of RNAs at specific subcellular locations regulating various local cellular events has gained much attention recently. Like most other classes of RNAs, the function of newly discovered circular RNAs (circRNAs) is predominantly determined by their association with different cellular factors in the cell. CircRNAs function as transcriptional and posttranscriptional regulators of gene expression by interacting with transcription factors, splicing regulators, RNA-binding proteins, and microRNAs or by translating into functional polypeptides.
View Article and Find Full Text PDFMethods Mol Biol
February 2024
The pre-existing theory of pre-mRNA splicing into linear mature RNA was questioned with the introduction of circular RNAs (circRNAs). Hundreds of studies using high throughput RNA-sequencing (RNA-seq) techniques and novel computational programs reported the abundant and ubiquitous expression of circRNAs originating by pre-mRNA backsplicing. CircRNAs are mostly involved in gene expression by regulating functions of interacting microRNAs (miRNAs) and RNA-binding proteins (RBPs) or translating into functional polypeptides.
View Article and Find Full Text PDFAlthough the functional role of circular RNA (circRNA) interaction with microRNAs and proteins has been studied extensively, circRNA interactions with the protein-coding mRNAs in intact cells remain largely unknown. Here, by employing AMT-mediated proximity ligation of RNA-RNA duplexes followed by circRNA enrichment and deep sequencing, we report a novel Cross-Linking Poly(A) Pulldown RNase R Sequencing (CLiPPR-seq) technology which identified hundreds of mRNA-interacting circRNAs in three different cell types, including βTC6, C2C12 and HeLa cells. Furthermore, CLiPP-seq without RNase R treatment was also performed to identify the mRNA expression in these cells.
View Article and Find Full Text PDFCircular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are covalently closed RNA molecules generated from precursor RNAs by the head-to-tail backsplicing of exons. Hundreds of studies demonstrated that circRNAs are ubiquitously expressed and regulate cellular events by modulating microRNA (miRNA) and RNA-binding protein (RBP) activities. A few circRNAs are also known to translate into functional polypeptides regulating cellular physiology.
View Article and Find Full Text PDFDigital droplet polymerase chain reaction (dd-PCR) is one of the most sensitive quantification methods; it fractionates the reaction into nearly 20,000 water-in-oil droplets, and the PCR occurs in the individual droplets. The dd-PCR has several advantages over conventional real-time qPCR, including increased accuracy in detecting low-abundance targets, omitting reference genes for quantification, eliminating technical replicates for samples, and showing high resilience to inhibitors in the samples. Recently, dd-PCR has become one of the most popular methods for accurately quantifying target DNA or RNA for gene expression analysis and diagnostics.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a novel class of covalently closed RNA molecules that recently emerged as a critical regulator of gene expression in development and diseases. Recent research has highlighted the importance of novel circRNAs in the biosynthesis and secretion of insulin from β-cells of pancreatic islets. However, all circRNAs expressed in pancreatic islets or β-cells are not readily available in the database.
View Article and Find Full Text PDFThe last decade has seen a robust increase in various types of novel RNA molecules and their complexity in gene regulation. RNA molecules play a critical role in cellular events by interacting with other biomolecules, including protein, DNA, and RNA. It has been established that RNA-RNA interactions play a critical role in several biological processes by regulating the biogenesis and function of RNA molecules.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a newly discovered family of regulatory RNAs generated through backsplicing. Genome-wide profiling of circRNAs found that circRNAs are ubiquitously expressed and regulate gene expression by acting as a sponge for RNA-binding proteins (RBPs) and microRNAs (miRNAs). To identify circRNAs expressed in mouse skeletal muscle, we performed high-throughput RNA-sequencing of circRNA-enriched gastrocnemius muscle RNA samples, which identified more than 1,200 circRNAs.
View Article and Find Full Text PDFHigh-throughput RNA-sequencing (RNA-seq) technologies combined with novel bioinformatic algorithms discovered a large class of covalently closed single-stranded RNA molecules called circular RNAs (circRNAs ). Although RNA-seq has identified more than a million circRNAs, only a handful of them is validated with other techniques, including northern blotting, gel-trap electrophoresis, exonuclease treatment assays, and polymerase chain reaction (PCR). Reverse transcription (RT) of total RNA followed by PCR amplification is the most widely used technique for validating circRNAs identified in RNA-seq.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA-protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a large family of noncoding RNA molecules that have emerged as novel regulators of gene expression by sequestering microRNAs (miRNAs) and RNA-binding proteins (RBPs). Several computational tools have been developed to predict circRNA interaction with target miRNAs and RBPs with a view to studying their potential effect on downstream target genes and cellular physiology. Biochemical assays, including reporter assays, AGO2 pulldown, ribonucleoprotein pulldown, and biotin-labeled RNA pulldown, are used to capture the association of miRNAs and RBPs with circRNAs.
View Article and Find Full Text PDFRecent advances in sequencing technologies and the discovery of non-coding RNAs (ncRNAs) have provided new insights in the molecular pathogenesis of cancers. Several studies have implicated the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and recently discovered circular RNAs (circRNAs) in tumorigenesis and metastasis. Unlike linear RNAs, circRNAs are highly stable and closed-loop RNA molecules.
View Article and Find Full Text PDFAdvancement in the RNA sequencing techniques has discovered hundreds of thousands of circular RNAs (circRNAs) in humans. However, the physiological function of most of the identified circRNAs remains unexplored. Recent studies have established that spliceosomal machinery and RNA-binding proteins modulate circRNA biogenesis.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a large family of noncoding RNAs that have emerged as novel regulators of gene expression. However, little is known about the function of circRNAs in pancreatic β-cells. Here, transcriptomic analysis of mice pancreatic islet RNA-sequencing data identified 77 differentially expressed circRNAs between mice fed with a normal diet and a high-fat diet.
View Article and Find Full Text PDFBy interacting with proteins and nucleic acids, the vast family of mammalian circRNAs is proposed to influence many biological processes. Here, RNA sequencing analysis of circRNAs differentially expressed during myogenesis revealed that circSamd4 expression increased robustly in mouse C2C12 myoblasts differentiating into myotubes. Moreover, silencing circSamd4, which is conserved between human and mouse, delayed myogenesis and lowered the expression of myogenic markers in cultured myoblasts from both species.
View Article and Find Full Text PDFHigh-throughput RNA sequencing and novel bioinformatic pipelines have identified thousands of circular (circ)RNAs containing backsplice junction sequences. However, circRNAs generated from multiple exons may contain different combinations of exons and/or introns arising from alternative splicing, while the backsplice junction sequence is the same. To be able to identify circRNA splice variants, we developed a method termed circRNA-Rolling Circle Amplification (circRNA-RCA).
View Article and Find Full Text PDFSkeletal muscles have an immense ability to regenerate from the muscle stem cells called satellite cells. The process of skeletal muscle regeneration is called myogenesis, which starts with activation of quiescent satellite cells immediately after muscle injury followed by proliferation and fusion of myoblasts into myotubes. Myogenesis is orchestrated through the expression of a specific set of genes which, at each step regulated by complex gene regulatory networks.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small noncoding RNAs that critically regulate gene expression. Their abundance and function have been linked to a range of physiologic and pathologic processes. In aged monkey muscle, miR-451a and miR-144-3p were far more abundant than in young monkey muscle.
View Article and Find Full Text PDFRecent developments in high-throughput RNA sequencing methods coupled with innovative bioinformatic tools have uncovered thousands of circular (circ)RNAs. CircRNAs have emerged as a vast and novel class of regulatory RNAs with potential to modulate gene expression by acting as sponges for microRNAs (miRNAs) and RNA-binding proteins (RBPs). The biochemical enrichment of circRNAs by exoribonuclease treatment or by depletion of polyadenylated RNAs coupled with deep-sequencing is widely used for the systematic identification of circRNAs.
View Article and Find Full Text PDF