Background: Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging.
View Article and Find Full Text PDFMuch of the excitement generated by induced pluripotent stem cell technology is concerned with the possibility of disease modeling as well as the potential for personalized cell therapy. However, to pursue this it is important to understand the 'normal' pluripotent state including its inherent variability. We have performed various molecular profiling assays for 21 hESC lines and 8 hiPSC lines to generate a comprehensive snapshot of the undifferentiated state of pluripotent stem cells.
View Article and Find Full Text PDFBackground: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs.
Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome.
Background: Acquisition of virulence factors and antibiotic resistance by many clinically important bacteria can be traced to horizontal gene transfer (HGT) between related or evolutionarily distant microflora. Comparative genomic analysis has become an important tool for identifying HGT DNA in emerging pathogens. We have adapted the multi-genome alignment tool EvoPrinter to facilitate discovery of HGT DNA sequences within bacterial genomes and within their mobile genetic elements.
View Article and Find Full Text PDFBackground: Multi-genome comparative analysis has yielded important insights into the molecular details of gene regulation. We have developed EvoPrinter, a web-accessed genomics tool that provides a single uninterrupted view of conserved sequences as they appear in a species of interest. An EvoPrint reveals with near base-pair resolution those sequences that are essential for gene function.
View Article and Find Full Text PDF