Publications by authors named "Amarendra N Misra"

Anthropogenic activities, geological processes, and biogenic sources have led to the enhanced concentration of arsenic (As), a toxic metalloid in water and soil. Non-edible, economically important plants can be employed for safe As phytoremediation in addition to generating extra income. However, these plants may get affected by stressful local environmental conditions.

View Article and Find Full Text PDF

Arsenic (As) is a toxic environmental pollutant. Growing Ricinus communis (castor) on As-contaminated land has the advantage that in addition to revegetation of contaminated land, it can produce bioenergy. To date, As tolerance mechanisms of this plant are not fully understood.

View Article and Find Full Text PDF

Castor, a non-food, dedicated bioenergy crop, has immense potential to be used for phytoremediation/revegetation of heavy metal contaminated sites. In the previous study, we identified arsenate [As(V)]-tolerant (WM) and As(V)-sensitive (GCH 2) genotypes of castor (Ricinus communis L.) with differential accumulation and tolerance of arsenic [As].

View Article and Find Full Text PDF

Boron (B) is a microelement required in vascular plants at a high concentration that produces excess boron and toxicity in many crops. B stress occurs widely and limits plant growth and crop productivity worldwide. Salicylic acid (SA) is an essential hormone in plants and is a phenolic compound.

View Article and Find Full Text PDF

In this report, activity and stability of horseradish peroxidase (HRP) entrapped in polyacrylamide gel in the presence of proline (HEP) are compared with that of enzyme entrapped in absence of proline (HE). Within polyacrylamide (8%) beads, 80% entrapment yield for peroxidase was observed in the presence as well as absence of proline. The HEP (1.

View Article and Find Full Text PDF

Effect of arsenate [As(V)] on biomass, photosynthetic rate, stomatal conductance, transpiration, oxidative stress, accumulation of As, Fe, Zn, Cu and Mn and expression of NRAMP genes was investigated in As(V) tolerant and sensitive genotypes of bioenergy crop Ricinus communis. As(V) treatments (100 and 200 μM) led to significant reduction in root and leaf biomass, photosynthetic rate, stomatal conductance and transpiration in GCH 2 and GCH 4 genotypes but no significant change or increase was observed in WM and DCH 177 genotypes. No significant difference was observed in hydrogen peroxide content and lipid peroxidation in As(V)-treated tolerant genotypes compared to control, whereas these parameters enhanced significantly in As(V)-treated sensitive genotypes.

View Article and Find Full Text PDF

The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria.

View Article and Find Full Text PDF

Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al.

View Article and Find Full Text PDF

Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.

View Article and Find Full Text PDF

The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important signalling molecule in plants under physiological and stress conditions. Here we review the influence of NO on chloroplasts which can be directly induced by interaction with the photosynthetic apparatus by influencing photophosphorylation, electron transport activity and oxido-reduction state of the Mn clusters of the oxygen-evolving complex or by changes in gene expression. The influence of NO-induced changes in the photosynthetic apparatus on its functions and sensitivity to stress factors are discussed.

View Article and Find Full Text PDF

Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen.

View Article and Find Full Text PDF

Although attempts have been made to unveil protein-protein and host-pathogen interactions based on molecular insights of important biological events and pathogenesis in various organisms, these efforts have not yet been reported in Corynebacterium pseudotuberculosis (Cp), the causative agent of Caseous Lymphadenitis (CLA). In this study, we used computational approaches to develop common conserved intra-species protein-protein interaction (PPI) networks first time for four Cp strains (Cp FRC41, Cp 316, Cp 3/99-5, and Cp P54B96) followed by development of a common conserved inter-species bacterial PPI using conserved proteins in multiple pathogens (Y. pestis, M.

View Article and Find Full Text PDF

Prokaryotes commonly present outer cell wall structures composed of a crystalline array of proteinaceous subunits, known as surface layers (S-layers). The ORF encoding the S-layer protein (SlpA) of Lactobacillus brevis was cloned into Lactococcus lactis under the transcriptional control of the xylose-inducible expression system (XIES). SlpA was secreted into the extracellular medium, as determined by immunoblotting, and assays on the kinetics of SlpA production revealed that repression of the system with glucose did not require the depletion of xylose from the medium that allows transitory ORF expression.

View Article and Find Full Text PDF

Caseous lymphadenitis is a chronic goat and sheep disease caused by Corynebacterium pseudotuberculosis (Cp) that accounts for a huge economic loss worldwide. Proper vaccination or medication is not available because of the lack of understanding of molecular biology of the pathogen. In a recent approach, four Cp (CpFrc41, Cp1002, CpC231, and CpI-19) genomes were sequenced to elucidate the molecular pathology of the bacteria.

View Article and Find Full Text PDF

In spite of genome sequences of both human and N. gonorrhoeae in hand, vaccine for gonorrhea is yet not available. Due to availability of several host and pathogen genomes and numerous tools for in silico prediction of effective B-cell and T-cell epitopes; recent trend of vaccine designing has been shifted to peptide or epitope based vaccines that are more specific, safe, and easy to produce.

View Article and Find Full Text PDF

The nitric oxide (NO) donor sodium nitroprusside (SNP) is frequently used in plant science in vivo. The present in vitro study reveals its effects on the photosynthetic oxygen evolution and the chlorophyll fluorescence directly on isolated pea thylakoid membranes. It was found that even at very low amounts of SNP (chlorophyll/SNP molar ratio∼67:1), the SNP-donated NO stimulates with more than 50% the overall photosystem II electron transport rate and diminishes the evolution of molecular oxygen.

View Article and Find Full Text PDF

Unlabelled: A Genomic Target Database (GTD) has been developed having putative genomic drug targets for human bacterial pathogens. The selected pathogens are either drug resistant or vaccines are yet to be developed against them. The drug targets have been identified using subtractive genomics approaches and these are subsequently classified into Drug targets in pathogen specific unique metabolic pathways,Drug targets in host-pathogen common metabolic pathways, and Membrane localized drug targets.

View Article and Find Full Text PDF

Thiamin and thiamin pyrophosphate (TPP) are well known for their important roles in human nutrition and enzyme catalysis. In this work, we present new evidence for an additional role of these compounds in the protection of cells against oxidative damage. Arabidopsis (Arabidopsis thaliana) plants subjected to abiotic stress conditions, such as high light, cold, osmotic, salinity, and oxidative treatments, accumulated thiamin and TPP.

View Article and Find Full Text PDF