Publications by authors named "Amara S Brinks"

Article Synopsis
  • Adolescence involves changes in the medial prefrontal cortex (mPFC), particularly related to parvalbumin (PV) interneurons, which can be affected by drug use like methamphetamine (METH).
  • This study examines how METH affects PV neuron and perineuronal net (PNN) expression in male and female rats at different stages of adolescence and young adulthood.
  • Results show that METH exposure alters PV neuron and PNN activity in females depending on the timing of exposure, indicating distinct vulnerabilities during adolescent development.
View Article and Find Full Text PDF

Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity and could influence the activity-dependent maturational process of these neurons.

View Article and Find Full Text PDF

Humans are exposed to phthalates, a class of endocrine-disrupting chemicals used in food packaging/processing, PVC plastics, and personal care products. Gestational exposure may lead to adverse neurodevelopmental outcomes. In a rat model, perinatal exposure to an environmentally relevant mixture and dose of phthalates leads to increased developmental apoptosis in the medial prefrontal cortex (mPFC) and a subsequent reduction in neurons and in cognitive flexibility measured in adults of both sexes (Sellinger et al.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an endocrine disruptor found in polycarbonate plastics and exposure in humans is nearly ubiquitous and it has widespread effects on cognitive, emotional, and reproductive behaviors in both humans and animal models. In our laboratory we previously found that perinatal BPA exposure results in a higher number of neurons in the adult male rat prefrontal cortex (PFC) and less play in adolescents of both sexes. Here we examine changes in the rate of postnatal apoptosis in the rat prefrontal cortex and its timing with brief BPA exposure.

View Article and Find Full Text PDF

Phthalates are a class of endocrine disruptors found in a variety of consumer goods, and offspring can be exposed to these compounds during gestation and lactation. Our laboratory has found that perinatal exposure to an environmentally relevant mixture of phthalates resulted in a decrease in cognitive flexibility and in neuron number in the adult rat medial prefrontal cortex (mPFC). Here, we examine effects of phthalate treatment on prenatal cellular proliferation and perinatal apoptosis in the mPFC.

View Article and Find Full Text PDF