Publications by authors named "Amar K Das"

Aim: Insufficient adherence to colorectal cancer (CRC) screening impedes individual and population health benefits, with about one-third of individuals non-adherent to available screening options. The impact of poor adherence is inadequately considered in most health economics models, limiting the evaluation of real-world population-level screening outcomes. This study introduces the CAN-SCREEN (Colorectal cANcer SCReening Economics and adherENce) model, utilizing real-world adherence scenarios to assess the effectiveness of a blood-based test (BBT) compared to existing strategies.

View Article and Find Full Text PDF

The current energy challenges in agriculture, industry, and transportation are aggravated by insufficient liquid petroleum fuels, strained by rapid depletion, and higher demand in the international market. Existing environmental pollution due to higher fossil fuel consumption, certainly draws the attention of many researchers to identify a better alternative fuel concerning engine efficiency and exhaust emissions. Waste plastic oil (WPO) derived by thermo-catalytic pyrolysis is found to be a promising alternative fuel due to it's similar fuel properties to diesel.

View Article and Find Full Text PDF

In the present research work, artificial neural network (ANN) is used to model the performance and emission parameters in a four-stroke, single-cylinder diesel engine combusting a blended fuel of diesel and catalytic co-pyrolysis oil produced from seeds of Pongamia pinnata, waste LDPE, and calcium oxide catalyst. The optimum yield of oil obtained was 92.5% at 500 °C temperature.

View Article and Find Full Text PDF

Background: Clinical decision support systems have been widely deployed to guide healthcare decisions on patient diagnosis, treatment choices, and patient management through evidence-based recommendations. These recommendations are typically derived from clinical practice guidelines created by clinical specialties or healthcare organizations. Although there have been many different technical approaches to encoding guideline recommendations into decision support systems, much of the previous work has not focused on enabling system generated recommendations through the formalization of changes in a guideline, the provenance of a recommendation, and applicability of the evidence.

View Article and Find Full Text PDF

The current study focuses on the engine performance and emission analysis of a 4-stroke compression ignition engine powered by waste plastic oil (WPO) obtained by the catalytic pyrolysis of medical plastic wastes. This is followed by their optimization study and economic analysis. This study demonstrates the use of artificial neural networks (ANN) to forecast a multi-component fuel mixture, which is novel and reduces the amount of experimental effort required to determine the engine output characteristics.

View Article and Find Full Text PDF

Randomized clinical trial (RCT) studies are the gold standard for scientific evidence on treatment benefits to patients. RCT outcomes may not be generalizable to clinical practice if the trial population is not representative of the patients for which the treatment is intended. Specifically, enrollment plans may not adequately include groups of patients with protected attributes, such as gender, race, or ethnicity.

View Article and Find Full Text PDF

Understanding the complexity of care delivery and care coordination for patients with multiple chronic conditions is challenging. Network analysis can model the relationship between providers and patients to find factors associated with patient mortality. We constructed a network by connecting the providers through shared patients, which was then partitioned into tightly connected communities using a community detection algorithm.

View Article and Find Full Text PDF

Background: Providing digital recordings of clinic visits to patients has emerged as a strategy to promote patient and family engagement in care. With advances in natural language processing, an opportunity exists to maximize the value of visit recordings for patients by automatically tagging key visit information (eg, medications, tests, and imaging) and linkages to trustworthy web-based resources curated in an audio-based personal health library.

Objective: This study aims to report on the user-centered development of HealthPAL, an audio personal health library.

View Article and Find Full Text PDF

Objective: We help identify subpopulations underrepresented in randomized clinical trials (RCTs) cohorts with respect to national, community-based or health system target populations by formulating population representativeness of RCTs as a machine learning (ML) fairness problem, deriving new representation metrics, and deploying them in easy-to-understand interactive visualization tools.

Materials And Methods: We represent RCT cohort enrollment as random binary classification fairness problems, and then show how ML fairness metrics based on enrollment fraction can be efficiently calculated using easily computed rates of subpopulations in RCT cohorts and target populations. We propose standardized versions of these metrics and deploy them in an interactive tool to analyze 3 RCTs with respect to type 2 diabetes and hypertension target populations in the National Health and Nutrition Examination Survey.

View Article and Find Full Text PDF

Objectives: The objective of this study is to build and evaluate a natural language processing approach to identify medication mentions in primary care visit conversations between patients and physicians.

Materials And Methods: Eight clinicians contributed to a data set of 85 clinic visit transcripts, and 10 transcripts were randomly selected from this data set as a development set. Our approach utilizes Apache cTAKES and Unified Medical Language System controlled vocabulary to generate a list of medication candidates in the transcribed text and then performs multiple customized filters to exclude common false positives from this list while including some additional common mentions of the supplements and immunizations.

View Article and Find Full Text PDF

When healthcare providers review the results of a clinical trial study to understand its applicability to their practice, they typically analyze how well the characteristics of the study cohort correspond to those of the patients they see. We have previously created a study cohort ontology to standardize this information and make it accessible for knowledge-based decision support. The extraction of this information from research publications is challenging, however, given the wide variance in reporting cohort characteristics in a tabular representation.

View Article and Find Full Text PDF

Importance: The lack of standards in methods to reduce bias for clinical algorithms presents various challenges in providing reliable predictions and in addressing health disparities.

Objective: To evaluate approaches for reducing bias in machine learning models using a real-world clinical scenario.

Design, Setting, And Participants: Health data for this cohort study were obtained from the IBM MarketScan Medicaid Database.

View Article and Find Full Text PDF

Increased scrutiny of artificial intelligence (AI) applications in healthcare highlights the need for real-world evaluations for effectiveness and unintended consequences. The complexity of healthcare, compounded by the user- and context-dependent nature of AI applications, calls for a multifaceted approach beyond traditional in silico evaluation of AI. We propose an interdisciplinary, phased research framework for evaluation of AI implementations in healthcare.

View Article and Find Full Text PDF

It is common practice for data providers to include text descriptions for each column when publishing datasets in the form of data dictionaries. While these documents are useful in helping an end-user properly interpret the meaning of a column in a dataset, existing data dictionaries typically are not machine-readable and do not follow a common specification standard. We introduce the Semantic Data Dictionary, a specification that formalizes the assignment of a semantic representation of data, enabling standardization and harmonization across diverse datasets.

View Article and Find Full Text PDF

Using electronic health data to predict adverse drug reaction (ADR) incurs practical challenges, such as lack of adequate data from any single site for rare ADR detection, resource constraints on integrating data from multiple sources, and privacy concerns with creating a centralized database from person-specific, sensitive data. We introduce a federated learning framework that can learn a global ADR prediction model from distributed health data held locally at different sites. We propose two novel methods of local model aggregation to improve the predictive capability of the global model.

View Article and Find Full Text PDF

Background And Objectives: Decisions about long-term care and financing can be difficult to comprehend, consider, and communicate. In a previous needs assessment, families in rural areas requested a patient-facing website; however, questions arose about the acceptability of an online tool for older adults. This study engaged older adults and family caregivers in (a) designing and refining an interactive, tailored decision aid website, and (b) field testing its utility, feasibility, and acceptability.

View Article and Find Full Text PDF

In clinical outcome studies, analysis has traditionally been performed using patient-level factors, with minor attention given to provider-level features. However, the nature of care coordination and collaboration between caregivers (providers) may also be important in determining patient outcomes. Using data from patients admitted to intensive care units at a large tertiary care hospital, we modeled the caregivers that provided medical service to a specific patient as patient-centric subnetwork embedded within larger caregiver networks of the institute.

View Article and Find Full Text PDF

Nonadherence to prescribed medications poses a significant public health problem. Prescription data in electronic medical records (EMRs) linked with pharmacy claims data provides an opportunity to examine the prescription fill rates and factors associated with it.Using a claims-EMR linked data, patients who had a prescription for either an antibiotic, antihypertensive, or antidiabetic in EMR were identified (index prescription).

View Article and Find Full Text PDF

In recent years, antipsychotic medications have increasingly been used in pediatric and geriatric populations, despite the fact that many of these drugs were approved based on clinical trials in adult patients only. Preliminary studies have shown that the "off-label" use of these drugs in pediatric and geriatric populations may result in adverse events not found in adults. In this study, we utilized the large-scale U.

View Article and Find Full Text PDF

Purpose: The 21-gene recurrence score (RS) identifies patients with breast cancer who derive little benefit from chemotherapy; it may reduce unwarranted variability in the use of chemotherapy. We tested whether the use of RS seems to guide chemotherapy receipt across different cancer care settings.

Methods: We developed a retrospective cohort of patients with breast cancer by using electronic medical record data from Stanford University (hereafter University) and Palo Alto Medical Foundation (hereafter Community) linked with demographic and staging data from the California Cancer Registry and RS results from the testing laboratory (Genomic Health Inc.

View Article and Find Full Text PDF

Introduction: Screening mammography has contributed to a significant increase in the diagnosis of ductal carcinoma in situ (DCIS), raising concerns about overdiagnosis and overtreatment. Building on prior observations from lineage evolution analysis, we examined whether measuring genomic features of DCIS would predict association with invasive breast carcinoma (IBC). The long-term goal is to enhance standard clinicopathologic measures of low- versus high-risk DCIS and to enable risk-appropriate treatment.

View Article and Find Full Text PDF

A major challenge in advancing scientific discoveries using data-driven clinical research is the fragmentation of relevant data among multiple information systems. This fragmentation requires significant data-engineering work before correlations can be found among data attributes in multiple systems. In this paper, we focus on integrating information on breast cancer care, and present a novel computational approach to identify correlations between administered drugs captured in an electronic medical records and biological factors obtained from a tumor registry through rapid data aggregation and analysis.

View Article and Find Full Text PDF

Background: Understanding of cancer outcomes is limited by data fragmentation. In the current study, the authors analyzed the information yielded by integrating breast cancer data from 3 sources: electronic medical records (EMRs) from 2 health care systems and the state registry.

Methods: Diagnostic test and treatment data were extracted from the EMRs of all patients with breast cancer treated between 2000 and 2010 in 2 independent California institutions: a community-based practice (Palo Alto Medical Foundation; "Community") and an academic medical center (Stanford University; "University").

View Article and Find Full Text PDF

Background: A variety of informatics approaches have been developed that use information retrieval, NLP and text-mining techniques to identify biomedical concepts and relations within scientific publications or their sentences. These approaches have not typically addressed the challenge of extracting more complex knowledge such as biomedical definitions. In our efforts to facilitate knowledge acquisition of rule-based definitions of autism phenotypes, we have developed a novel semantic-based text-mining approach that can automatically identify such definitions within text.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2rsdcuj1oe6ur330gmul6811hdnkppda): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once