Publications by authors named "Amar Deep"

Immune systems must rapidly sense viral infections to initiate antiviral signaling and protect the host. Bacteria encode >100 distinct viral (phage) defense systems and each has evolved to sense crucial components or activities associated with the viral lifecycle. Here we used a high-throughput AlphaFold-multimer screen to discover that a bacterial NLR-related protein directly senses multiple phage proteins, thereby limiting immune evasion.

View Article and Find Full Text PDF

Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD).

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) complexes play pivotal roles in genome organization and maintenance across all domains of life. In prokaryotes, SMC-family Wadjet complexes structurally resemble the widespread MukBEF but serve a defensive role by inhibiting plasmid transformation. We previously showed that Wadjet specifically cleaves plasmid DNA; however, the molecular mechanism underlying plasmid recognition remains unclear.

View Article and Find Full Text PDF

Tightly controlled duplication of centrosomes, the major microtubule-organizing centers of animal cells, ensures bipolarity of the mitotic spindle and accurate chromosome segregation. The RBCC (RING-B-box-coiled coil) ubiquitin ligase TRIM37, whose loss is associated with elevated chromosome missegregation and the tumor-prone developmental human disorder Mulibrey nanism, prevents the formation of ectopic spindle poles that assemble around structured condensates containing the centrosomal protein centrobin. Here, we show that TRIM37's TRAF domain, unique in the extended TRIM family, engages peptide motifs in centrobin to suppress condensate formation.

View Article and Find Full Text PDF
Article Synopsis
  • SMC complexes, like condensin and cohesin, help organize DNA by extruding loops, but the rules controlling this process are not fully understood.
  • Research using single-molecule analysis and simulations shows that monomeric complexes extrude DNA from one side, while dimeric complexes (e.g., Smc5/6 and Wadjet) do so from both sides depending on DNA tension.
  • The study reveals that DNA tension and thermal fluctuations influence how these complexes operate, leading to variations in looping behavior and debunking the idea that extrusion symmetry is fixed.
View Article and Find Full Text PDF

Background Liver cirrhosis (LC) caused by chronic hepatitis C (CHC) infection is a major global public health concern. This study will look at the risk factors for progressive fibrosis and cirrhosis in patients with persistent hepatitis C virus (HCV) infection. Methods In this cohort study, a total of 300 patients were included.

View Article and Find Full Text PDF
Article Synopsis
  • Bacteria and their viruses are in a continuous evolutionary struggle, with bacteria developing systems to defend against viral attacks.
  • The study reveals that the bacterial phage anti-restriction-induced system (PARIS) functions as a toxin-antitoxin system, where the antitoxin AriA keeps the toxin AriB inactive until triggered by a specific phage protein, Ocr.
  • The research also shows that the structure of AriA allows it to release the active AriB, which then inhibits protein translation and halts cell growth, providing insight into how bacteria detect and respond to phage infections.
View Article and Find Full Text PDF

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1.

View Article and Find Full Text PDF

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) protein complexes play pivotal roles in genome organization and maintenance across all domains of life. In prokaryotes, SMC family Wadjet complexes structurally resemble the widespread MukBEF genome-organizing complexes but serve a defensive role by inhibiting plasmid transformation. We previously showed that Wadjet specifically cleaves circular DNA; however, the molecular mechanism underlying DNA substrate recognition remains unclear.

View Article and Find Full Text PDF

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1.

View Article and Find Full Text PDF

Bacteria and the viruses that infect them (bacteriophages or phages) are engaged in an evolutionary arms race that has resulted in the development of hundreds of bacterial defense systems and myriad phage-encoded counterdefenses. While the mechanisms of many bacterial defense systems are known, how these systems avoid toxicity outside infection yet activate quickly upon sensing phage infection is less well understood. Here, we show that the bacterial Phage Anti-Restriction-Induced System (PARIS) operates as a toxin-antitoxin system, in which the antitoxin AriA sequesters and inactivates the toxin AriB until triggered by the T7 phage counterdefense protein Ocr.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease (AD). Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. Models of tau depletion or pathology show loss of genetically silent heterochromatin, aberrant expression of heterochromatic genes, and transposable element activation.

View Article and Find Full Text PDF

Hepatitis C virus infection causes chronic diseases such as cirrhosis and hepatocellular carcinoma. Metabolomics research has been shown to be linked to pathophysiologic pathways in liver illnesses. The aim of this study was to investigate the serum metabolic profile of patients with chronic hepatitis C (CHC) infection and to identify underlying mechanisms as well as potential biomarkers associated with the disease.

View Article and Find Full Text PDF
Article Synopsis
  • Large-genome bacteriophages (jumbo phages) have a protective nuclear-like compartment that shields their genetic material from the host's defense systems, such as restriction enzymes and CRISPR/Cas nucleases.
  • The phage must transport mRNA out of this compartment for protein synthesis and bring in proteins for DNA replication and mRNA transcription.
  • A key protein identified, Chimallin C (ChmC), binds RNA and helps stabilize phage mRNAs, facilitating their movement through the nuclear shell to support successful phage infection.
View Article and Find Full Text PDF

Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses. Bacteriophages of the family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA. Previously, we observed lipid membrane-bound vesicles in cells infected by , but due to the paucity of genetics tools for these viruses it was unknown if these vesicles represented unproductive, abortive infections or a stage in the phage life cycle.

View Article and Find Full Text PDF

Background And Aims: Sofosbuvir (S), daclatasvir (D), ledipasvir, or velpatasvir (V) containing first-line hepatitis C virus (HCV) treatment regimens fail to cure viremia in 5-10%. We report our experience of HCV retreatment using these first-line drugs, in a setting where second-line anti-HCV drugs are not available.

Methods: Adults, who had relapsed after first complete course of a sofosbuvir-containing first-line, pegylated interferon free, anti-HCV treatment regimen with or without ribavirin (Riba) were included.

View Article and Find Full Text PDF

In the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against host immune factors. By segregating the genome from the host cytoplasm, however, the 'phage nucleus' introduces the need to specifically translocate messenger RNA and proteins through the nuclear shell and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages.

View Article and Find Full Text PDF

Prokaryotes encode diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here we reveal the structural basis for activation of Shedu. In the inactive homotetramer, a key catalytic residue in Shedu's nuclease domain is sequestered away from the catalytic site.

View Article and Find Full Text PDF

In the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against DNA-targeting immune factors. By segregating the genome from the host cytoplasm, however, the "phage nucleus" introduces the need to specifically transport mRNA and proteins through the nuclear shell, and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) is a common cause of liver cirrhosis and hepatocellular carcinoma. Globally, nearly 71 million people have chronic HCV infection, and approximately 399,000 dies annually. In patients without cirrhosis, HCV infection is treated with 12 weeks of sofosbuvir/velpatasvir combination.

View Article and Find Full Text PDF
Article Synopsis
  • The DarTG toxin-antitoxin system features the DarT toxin, which disrupts DNA replication by modifying single-stranded DNA (ssDNA), thus impacting bacterial growth and phage infection.
  • DarG, the antitoxin, counteracts this effect by binding to DarT, but the details of how this interaction neutralizes the toxin were unclear until now.
  • Researchers determined the structure of the DarT-DarG complex and found that DarG prevents DarT from binding ssDNA, effectively inactivating the toxin through this protein-protein interaction, providing insight into its neutralization mechanism.
View Article and Find Full Text PDF

During mitosis, chromosomes assemble kinetochores to dynamically couple with spindle microtubules. Kinetochores also function as signaling hubs directing mitotic progression by recruiting and controlling the fate of the anaphase promoting complex/cyclosome (APC/C) activator CDC-20. Kinetochores either incorporate CDC-20 into checkpoint complexes that inhibit the APC/C or dephosphorylate CDC-20, which allows it to interact with and activate the APC/C.

View Article and Find Full Text PDF

Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7662qs4bte3i1t91hf5pumsmj376ufqh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once