Publications by authors named "Amar Bir Sidhu"

In the current era of malaria eradication, reducing transmission is critical. Assessment of transmissibility requires tools that can accurately identify the various developmental stages of the malaria parasite, particularly those required for transmission (sexual stages). Here, we present a method for estimating relative amounts of Plasmodium falciparum asexual and sexual stages from gene expression measurements.

View Article and Find Full Text PDF

Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival.

View Article and Find Full Text PDF

This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC₅₀s], 200 to 285 nM) and inhibits P.

View Article and Find Full Text PDF

Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P.

View Article and Find Full Text PDF