Publications by authors named "Amar Bahadur Singh"

Increasing UV radiation in the atmosphere due to the depletion of ozone layer is emerging abiotic stress for agriculture. Although plants have evolved to adapt to UV radiation through different mechanisms, but the role of phyllosphere microorganisms in counteracting UV radiation is not well studied. The current experiment was undertaken to evaluate the role of phyllosphere and its metabolite in the alleviation of abiotic stress rendered by ultraviolet (UV) radiation.

View Article and Find Full Text PDF

The present research was conducted to study the potential of cotton for the remediation of soils contaminated with Cd, to understand the biochemical basis of its tolerance to, and to investigate the plant-microbe interaction in the rhizosphere for enhancement of phytoextraction of Cd. Cotton (Bt RCH-2) was exposed to four Cd levels (0, 50, 100, and 200 mg/kg soil) in a completely randomised design and found that the plant could tolerate up to 200 mg/kg soil. Cd stress increased the total phenol, proline, and free amino acid contents in the plant leaf tissue compared with control but inhibited basal soil respiration, fluorescein diacetate hydrolysis, and activities of several enzymes viz.

View Article and Find Full Text PDF

Two experiments were conducted to determine the cotton plant's tolerance to Pb and its remediation potential. In the first experiment, the phytoremediation potential was determined by exposing the plant to four levels of Pb (0, 500, 750, and 1000 mg kg). The cotton plant exhibited an excellent tolerance index at Pb 1000 mg kg (root 78.

View Article and Find Full Text PDF

TRIB1 is a GWAS locus associated with plasma cholesterol and triglycerides (TG) levels. In mice, liver-specific overexpression of TRIB1 lowers plasma lipid levels. Berberine (BBR) is a natural lipid lowering drug that reduces plasma LDL-cholesterol (LDL-C), total cholesterol (TC) and TG in hyperlipidemic patients and in mice by mechanisms involving upregulation of hepatic LDL receptor (LDLR).

View Article and Find Full Text PDF

Long-chain acyl-CoA synthetase 1 (ACSL1) plays a pivotal role in fatty acid β‑oxidation in heart, adipose tissue and skeletal muscle. However, key functions of ACSL1 in the liver remain largely unknown. We investigated acute effects of hepatic ACSL1 deficiency on lipid metabolism in adult mice under hyperlipidemic and normolipidemic conditions.

View Article and Find Full Text PDF

Objective- The objective of this study was to determine whether and how activation of farnesoid X receptor (FXR) by obeticholic acid (OCA), a clinical FXR agonist, modulates liver low-density lipoprotein receptor (LDLR) expression under normolipidemic conditions. Approach and Results- Administration of OCA to chow-fed mice increased mRNA and protein levels of LDLR in the liver without affecting the sterol-regulatory element binding protein pathway. Profiling of known LDLR mRNA-binding proteins demonstrated that OCA treatment did not affect expressions of mRNA degradation factors hnRNPD (heterogeneous nuclear ribonucleoprotein D) or ZFP36L1 but increased the expression of Hu antigen R (HuR) an mRNA-stabilizing factor.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9) impedes low‑density lipoprotein (LDL) receptor (LDLR)-mediated LDL-cholesterol uptake and has hence emerged as a critical regulator of serum cholesterol levels and a new therapeutic target for the treatment of hypercholesterolemia. Statins have been shown to elevate circulating PCSK9 levels by stimulating PCSK9 gene transcription, which reduces the clinical efficacy of statin in LDL‑cholesterol reduction. The transcription of PCSK9 is partially controlled by the hepatocyte nuclear factor 1 (HNF1) binding site embedded in the proximal region of its promoter.

View Article and Find Full Text PDF

Soil nutrient management is a key component contributing to the greenhouse gas (GHG) flux and mitigation potential of agricultural production systems. However, the effect of soil nutrient management practices on GHG flux and global warming potential (GWP) is less understood in agricultural soils of India. The present study was conducted to compare three nutrient management systems practiced for nine consecutive years in a soybean-wheat cropping system in the Vertisols of India, in terms of GHG flux and GWP.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor δ (PPARδ) regulates many genes involved in lipid metabolism. Hepatic lysophosphatidylcholine acyltransferase 3 (LPCAT3) has critical functions in triglycerides transport and endoplasmic reticulum stress response due to its unique ability to catalyze the incorporation of polyunsaturated fatty acids into phospholipids. Previous studies identified liver X receptor as the transcription factor controlling LPCAT3 expression in mouse liver tissue.

View Article and Find Full Text PDF

Long-chain acyl-CoA synthetase 1 (ACSL1) plays a key role in fatty acid metabolism. To identify novel transcriptional modulators of ACSL1, we examined ACSL1 expression in liver tissues of hamsters fed a normal diet, a high fat diet, or a high cholesterol and high fat diet (HCHFD). Feeding hamsters HCHFD markedly reduced hepatic Acsl1 mRNA and protein levels as well as acyl-CoA synthetase activity.

View Article and Find Full Text PDF

The hepatic expression of low-density lipoprotein (LDL) receptor (LDLR) gene is regulated primarily at the transcriptional level by a sterol-regulatory element (SRE) in its proximal promoter region which is the site of action of SRE-binding protein 2 (SREBP2). However whether additional cis-regulatory elements contribute to LDLR transcription has not been fully explored. We investigated the function of a putative peroxisome proliferator-activated receptor (PPAR)-response element (PPRE) sequence motif located at -768 to -752 bases upstream of the transcription start site of human LDLR gene in response to PPARδ activation.

View Article and Find Full Text PDF

Background: High fructose diet (HFD) induces dyslipidemia and insulin resistance in experimental animals and humans with incomplete mechanistic understanding. By utilizing mice and hamsters as in vivo models, we investigated whether high fructose consumption affects serum PCSK9 and liver LDL receptor (LDLR) protein levels.

Results: Feeding mice with an HFD increased serum cholesterol and reduced serum PCSK9 levels as compared with the mice fed a normal chow diet (NCD).

View Article and Find Full Text PDF

The transcription factors hepatic nuclear factor (HNF)1α and HNF1β can bind to the HNF1 site on the proprotein convertase subtilisin/kexin type 9 (PCSK9) promoter to activate transcription in HepG2 cells. However, it is unknown whether one or both HNF1 factors are obligatory for transactivating hepatic PCSK9 gene expression in vivo. We developed shRNA adenoviral constructs (Ad-shHNF1α and Ad-shHNF1β) to examine the effects of knockdown of HNF1α or HNF1β on PCSK9 expression and its consequent impact on LDL receptor (LDLR) protein levels in cultured hepatic cells and liver tissue.

View Article and Find Full Text PDF

The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals.

View Article and Find Full Text PDF

Our previous in vitro studies have identified hepatocyte nuclear factor 1α (HNF1α) as an obligated trans-activator for PCSK9 gene expression and demonstrated its functional involvement in the suppression of PCSK9 expression by berberine (BBR), a natural cholesterol-lowering compound. In this study, we investigated the mechanism underlying the inhibitory effect of BBR on HNF1α-mediated PCSK9 transcription. Administration of BBR to hyperlipidemic mice and hamsters lowered circulating PCSK9 concentrations and hepatic PCSK9 mRNA levels without affecting the gene expression of HNF1α.

View Article and Find Full Text PDF

The potential of an ornamental shrub Crown of thorns (Euphorbia milli) was evaluated for remediation of soil contaminated with Cr. The plant is one of the rare succulent ornamental shrubs with a slow to moderate growth rate and is capable of blooming almost year-round. The plant could tolerate well up to 75 mg of applied Cr and beyond that there was mortality of plants.

View Article and Find Full Text PDF

Background: CETP inhibitors block the transfer of cholesteryl ester from HDL-C to VLDL-C and LDL-C, thereby raising HDL-C and lowering LDL-C. In this study, we explored the effect of CETP inhibitors on hepatic LDL receptor (LDLR) and PCSK9 expression and further elucidated the underlying regulatory mechanism.

Results: We first examined the effect of anacetrapib (ANA) and dalcetrapib (DAL) on LDLR and PCSK9 expression in hepatic cells in vitro.

View Article and Find Full Text PDF

ACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells.

View Article and Find Full Text PDF

It is well-established that over-accumulation of dietary cholesterol in the liver inhibits sterol-regulatory element binding protein (SREBP)-mediated LDL receptor (LDLR) gene transcription leading to a reduced hepatic LDLR mRNA level in hypercholesterolemic animals. However, it is unknown whether elevated cholesterol levels can elicit a cellular response to increase LDLR mRNA turnover to further repress LDLR expression in liver tissue. In the current study, we examined the effect of a high cholesterol diet on the hepatic expression of LDLR mRNA binding proteins in three different animal models and in cultured hepatic cells.

View Article and Find Full Text PDF

Objective: Previous studies showed that low-density lipoprotein receptor (LDLR) mRNA 3' untranslated region (UTR) contains regulatory elements responsible for rapid mRNA turnover in hepatic cells and mediates the mRNA stabilization induced by berberine (BBR). Here, we elucidate the underlying mechanism of BBR's action by characterizing mRNA-binding proteins that modulate LDLR mRNA decay via 3'UTR in liver tissue in vivo.

Approach And Results: We generated a transgenic mouse model (Alb-Luc-UTR) that expresses Luc-LDLR3'UTR reporter gene driven by the albumin promoter to study 3'UTR function in mediating LDLR mRNA decay in liver tissue.

View Article and Find Full Text PDF

Dietary soy isoflavones including genistein and daidzein have been shown to have favorable effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of cladrin and formononetin, two structurally related methoxydaidzeins found in soy food and other natural sources. Cladrin, at as low as 10 nM, maximally stimulated both osteoblast proliferation and differentiation by activating MEK-Erk pathway.

View Article and Find Full Text PDF

Following a lead obtained from stem-bark extract of Butea monosperma, two structurally related methoxyisoflavones; cajanin and isoformononetin were studied for their effects in osteoblasts. Cajanin had strong mitogenic as well as differentiation-promoting effects on osteoblasts that involved subsequent activation of MEK-Erk and Akt pathways. On the other hand, isoformononetin exhibited potent anti-apoptotic effect in addition to promoting osteoblast differentiation that involved parallel activation of MEK-Erk and Akt pathways.

View Article and Find Full Text PDF

The designed and synthesized 2-(4-methoxyphenyl) ethyl] acetamide derivatives (3a, 3b and 3c) were evaluated for their PTP1B inhibitory activity where they showed IC(50) values 69 microM, 87 microM and 71 microM, respectively. These results correlated well with the docking studies and in vivo screening of the compounds for their antidiabetic activity in SLM and STZ models.

View Article and Find Full Text PDF

Background And Aims: The db/+ mice, which represent the heterozygous counterpart of diabetic db/db mice, are carriers of the mutated gene of the leptin receptor but do not become diabetic at any stage during their lifespan. These mice are being used only for the production of db/db mice. Attempts were made to develop these mice as an alternate in vivo model for antidiabetic drug screening.

View Article and Find Full Text PDF