Publications by authors named "Amanjot K Riar"

The mitochondrial unfolded protein response (UPRmt) is a transcriptional program aimed at restoring proteostasis in mitochondria. Upregulation of mitochondrial matrix proteases and heat shock proteins was initially described. Soon thereafter, a distinct UPRmt induced by misfolded proteins in the mitochondrial intermembrane space (IMS) and mediated by the estrogen receptor alpha (ERα), was found to upregulate the proteasome and the IMS protease OMI.

View Article and Find Full Text PDF

Background: Developing brain is a major target for alcohol's actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal progenitors which generate majority of the cortical layers is not known.

View Article and Find Full Text PDF

Epidemiological and animal studies suggest that environmental toxins including paraquat (PQ) increase the risk of developing Parkinson's disease (PD) by damaging nigrostriatal dopaminergic neurons. We previously showed that overexpression of a group of microRNAs (miRs) affects the antioxidant promoting factor, Nrf2 and related glutathione-redox homeostasis in SH-SY5Y dopaminergic neurons. Although, dysregulation of redox balance by PQ is well documented, the role for miRs and their impact have not been elucidated.

View Article and Find Full Text PDF

Ingestion of ethanol (ETOH) during pregnancy induces grave abnormalities in developing fetal brain. We have previously reported that ETOH induces programmed cell death 4 (PDCD4), a critical regulator of cell growth, in cultured fetal cerebral cortical neurons (PCNs) and in the cerebral cortex in vivo and affect protein synthesis as observed in Fetal Alcohol Spectrum Disorder (FASD). However, the mechanism which activates PDCD4 in neuronal systems is unclear and understanding this regulation may provide a counteractive strategy to correct the protein synthesis associated developmental changes seen in FASD.

View Article and Find Full Text PDF

Primary cultures of fetal rat cortical neurons and astrocytes were used to test the hypothesis that astrocyte-mediated control of neuronal glutathione (GSH) is a potent factor in neuroprotection against rotenone and paraquat. In neurons, rotenone (0.025-1 μM) for 4 and 24 h decreased viability as did paraquat (2-100 μM).

View Article and Find Full Text PDF

Ethanol (ETOH) can cause apoptotic death of neurons by depleting GSH with an associated increase in oxidative stress. The current study illustrates a means to overcome this ETOH-induced neurotoxicity by enhancing GSH through boosting Nrf2, a transcription factor that controls GSH homeostasis. ETOH treatment caused a significant increase in Nrf2 protein, transcript expression, Nrf2-DNA binding activity, and expression of its transcriptional target, NQO1, in primary cortical neuron (PCNs).

View Article and Find Full Text PDF