Background: Cellulose-active lytic polysaccharide monooxygenases (LPMOs) secreted by filamentous fungi play a key role in the degradation of recalcitrant lignocellulosic biomass. They can occur as multidomain proteins fused to a carbohydrate-binding module (CBM). From a biotech perspective, LPMOs are promising innovative tools for producing nanocelluloses and biofuels, but their direct action on cellulosic substrates is not fully understood.
View Article and Find Full Text PDFis a wood-inhabiting agaricomycete known for its ability to cause strong white-rot decay on hardwood and for its high tolerance of phenolic compounds. The goal of the present work was to gain insights into the molecular biology and biochemistry of the heme-including class II and dye-decolorizing peroxidases secreted by this fungus. Proteomic analysis of the secretome of BRFM 1218 grown on oak wood revealed a set of 200 secreted proteins, among which were the dye-decolorizing peroxidase DyP1 and the versatile peroxidase VP2.
View Article and Find Full Text PDF