Publications by authors named "Amani Alsam"

This study investigates the structural and luminescent properties UV radiation of Tb³⁺-doped K₇CaY₂(B₅O₁₀)₃ (KCYBO) phosphors prepared using a microwave-assisted sol-gel method, with a focus on the impact of Na⁺ co-doping. Tb³⁺ ions were effectively integrated as evidenced by X-ray diffraction (XRD) and Rietveld analysis, without disrupting the crystal structure. Photoluminescence (PL) analysis showed intense green emissions at 542 nm, which are due to the D₄ → F₅ transition in Tb³⁺.

View Article and Find Full Text PDF

The Photophysical properties, such as fluorescence quenching, and photoexcitation dynamics of bimolecular non-covalent systems consisting of cationic poly[(9,9-di(3,3'-N,N'-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and anionic graphene carboxylate (GC) have been discovered for the first time via steady-state and time-resolved femtosecond transient absorption (TA) spectroscopy with broadband capabilities. The steady-state fluorescence of PFN is quenched with high efficiency by the GC acceptor. Fluorescence lifetime measurements reveal that the quenching mechanism of PFN by GC is static.

View Article and Find Full Text PDF

This work gives a comprehensive chromatographic assessment of biodiesel generation from plant seed oil using ecologically friendly nano-catalysts. Researchers all over the world are actively looking for new ways to satisfy the urgent need for clean and renewable energy sources. The resultant biodiesel was fully characterized utilizing modern techniques like scanning electron microscopy, energy diffraction X-ray and X-ray diffraction.

View Article and Find Full Text PDF

A series of π-conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE → NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers.

View Article and Find Full Text PDF