Publications by authors named "Amandine Sache"

Objective: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities.

View Article and Find Full Text PDF

A radiological accident, whether from industrial, medical, or malicious origin, may result in localized exposure to high doses of ionizing radiations, leading to the development of local radiation injury (LRI), that may evolve toward deep ulceration and necrosis of the skin and underlying tissues. Early diagnosis is therefore crucial to facilitate identification and management of LRI victims. Circulating microRNAs (miRNA) have been studied as potential diagnostic biomarkers of several diseases including hematological defects following whole-body irradiation (WBI).

View Article and Find Full Text PDF

Background: To date, paediatric thyroid cancer has been the most severe health consequence of the Chernobyl accident, caused by radioactive iodine (I) aerosol's dispersion. WHO recommends a single dose of potassium iodide (KI) to reduce this risk. Following the Fukushima accident, it became obvious that repetitive doses of KI may be necessary due to multiple exposures to I.

View Article and Find Full Text PDF

About half of people with cancer are treated with radiation therapy; however, normal tissue toxicity still remains a dose-limiting factor for this treatment. The skin response to ionizing radiation may involve multiple inflammatory outbreaks. The endothelium is known to play a critical role in radiation-induced vascular injury.

View Article and Find Full Text PDF

Patients who undergo pelvic or abdominal radiotherapy may develop side effects that can be life threatening. Tissue complications caused by radiation-induced stem cell depletion may result in structural and functional alterations of the gastrointestinal (GI) tract. Stem cell therapy using mesenchymal stem cells (MSC) is a promising approach for replenishment of the depleted stem cell compartment during radiotherapy.

View Article and Find Full Text PDF

It has been suggested that human mesenchymal stem cells (hMSC) could be used to repair numerous injured tissues. We have studied the potential use of hMSC to limit radiation-induced skin lesions. Immunodeficient NOD/SCID mice were locally irradiated to the leg (30 Gy, dose rate 2.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been shown to migrate to various tissues. There is little information on the fate and potential therapeutic efficacy of the reinfusion of MSCs following total body irradiation (TBI). We addressed this question using human MSC (hMSCs) infused to nonobese diabetic/ severe combined immunodeficient (NOD/SCID) mice submitted to TBI.

View Article and Find Full Text PDF