Publications by authors named "Amandine Mathias"

Objective: To investigate the longitudinal dynamics of serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) levels in people with multiple sclerosis (pwMS) under B-cell depleting therapy (BCDT) and their capacity to prognosticate future progression independent of relapse activity (PIRA) events.

Methods: A total of 362 pwMS (1,480 samples) starting BCDT in the Swiss Multiple Sclerosis (MS) Cohort were included. sGFAP levels in 2,861 control persons (4,943 samples) provided normative data to calculate adjusted Z scores.

View Article and Find Full Text PDF
Article Synopsis
  • Up to 46% of patients with suspected autoimmune limbic encephalitis don’t test positive for known central nervous system antibodies, prompting the development of a new cell-based assay (CBA) for detecting novel neural antibodies using human-induced pluripotent stem cells (hiPSCs).
  • The study involved testing serum and cerebrospinal fluid from 99 patients with inflammatory and non-inflammatory neurological diseases to identify IgG binding to hiPSC-derived neurons and astrocytes using advanced fluorescence techniques.
  • The CBA successfully detected neural-specific antibodies in 19 out of 99 patients, with a higher prevalence in those with inflammatory neurological diseases compared to non-inflammatory cases, underscoring its potential in identifying previously unknown autoantibodies.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin.

View Article and Find Full Text PDF

Encephalitis is a rare and potentially fatal manifestation of herpes simplex type 1 infection. Following genome-wide genetic analyses, we identified a previously uncharacterized and very rare heterozygous variant in the E3 ubiquitin ligase WWP2, in a 14-month-old girl with herpes simplex encephalitis. The p.

View Article and Find Full Text PDF
Article Synopsis
  • Intrathecal IgM production in multiple sclerosis (MS) is correlated with a more severe disease progression.
  • Researchers analyzed cerebrospinal fluid (CSF) from MS patients and controls to identify autoreactive IgM antibodies, discovering that about 10% of MS patients had unique IgM binding profiles.
  • One specific IgM antibody was linked to increased immune cell activity in the brain and was found to target a protein called SCARA5, suggesting that IgM may play a role in promoting inflammation in MS.
View Article and Find Full Text PDF

Progressive multifocal leukoencephalopathy is a crimpling demyelinating disease of the central nervous system caused by JC polyomavirus (JCPyV). Much about JCPyV propagation in the brain remains obscure because of a lack of proper animal models to study the virus in the context of the disease, thus hampering efforts toward the development of new antiviral strategies. Here, having established a robust and representative model of JCPyV infection in human-induced pluripotent stem cell-derived astrocytes, we are able to fully characterize the effect of JCPyV on the biology of the cells and show that the proteomic signature observed for JCPyV-infected astrocytes is extended to extracellular vesicles (EVs).

View Article and Find Full Text PDF

Background And Objective: Depleting CD20 B cells is the primary mechanism by which ocrelizumab (OCRE) is efficient in persons with multiple sclerosis (pwMS). However, the exact role of OCRE on other immune cell subsets directly or indirectly remains elusive. The purpose of this study is to characterize the dynamics of peripheral immune cells of pwMS on OCRE.

View Article and Find Full Text PDF

This protocol describes the generation and characterization of human induced pluripotent stem cells (hiPSCs) from erythroblasts. A key difference with classical protocols is the reprogramming of erythroblasts from a simple blood draw as opposed to fibroblasts/keratinocytes, which requires a biopsy. Moreover, working with erythroblasts ensures that no recombination of the TCR/BCR genes occurs, as opposed to T cells and whole peripheral blood mononuclear cells-based approaches.

View Article and Find Full Text PDF

Background: Dimethyl fumarate (DMF), a drug used for the treatment of multiple sclerosis (MS) and psoriasis, has been shown to activate the Keap1/Nrf2 antioxidant response. Nrf2 exerts pleiotropic roles in the thyroid gland; among others, single nucleotide polymorphisms (SNPs) in the gene encoding Nrf2 modulate the risk of Hashimoto's thyroiditis (HT), suggesting that pharmacological activation of Nrf2 might also be protective. However, a patient with acute exacerbation of HT after starting DMF for MS was recently reported, raising questions about the thyroidal safety of Nrf2 activators.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology, linked to alterations in both the innate and the adaptive immune system. Due to the heterogeneity of the clinical presentation, the diagnosis of SLE remains complicated and is often made years after the first symptoms manifest, delaying treatment, and worsening the prognosis. Several studies have shown that signaling lymphocytic activation molecule family (SLAMF) receptors are aberrantly expressed and dysfunctional in SLE immune cells, contributing to the altered cellular function observed in these patients.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) breakdown and immune cell infiltration into the CNS are early hallmarks of multiple sclerosis (MS). The mechanisms leading to BBB dysfunction are incompletely understood and generally thought to be a consequence of neuroinflammation. Here, we have challenged this view and asked if intrinsic alterations in the BBB of MS patients contribute to MS pathogenesis.

View Article and Find Full Text PDF

This protocol describes how to obtain human astrocytes from human-induced pluripotent stem cells (hiPSCs) in chemically defined media, without the use of fetal bovine serum (FBS). FBS eases the differentiation of astrocytes but also deeply alters their phenotype, as compared with their counterparts. Our protocol generates hiPSC-derived astrocytes displaying a phenotype and functions similar to human primary astrocytes, including adequate response to inflammation, neurotransmitter uptake, and trophic support to neurons.

View Article and Find Full Text PDF

Objective: To assess whether chronic white matter inflammation in patients with multiple sclerosis (MS) as detected in vivo by paramagnetic rim MRI lesions (PRLs) is associated with higher serum neurofilament light chain (sNfL) levels, a marker of neuroaxonal damage.

Methods: In 118 patients with MS with no gadolinium-enhancing lesions or recent relapses, we analyzed 3D-submillimeter phase MRI and sNfL levels. Histopathologic evaluation was performed in 25 MS lesions from 20 additional autopsy MS cases.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-derived blood-brain barrier (BBB) models established to date lack expression of key adhesion molecules involved in immune cell migration across the BBB in vivo. Here, we introduce the extended endothelial cell culture method (EECM), which differentiates hiPSC-derived endothelial progenitor cells to brain microvascular endothelial cell (BMEC)-like cells with good barrier properties and mature tight junctions. Importantly, EECM-BMEC-like cells exhibited constitutive cell surface expression of ICAM-1, ICAM-2, and E-selectin.

View Article and Find Full Text PDF

Recent studies highlighted the importance of astrocytes in neuroinflammatory diseases, interacting closely with other CNS cells but also with the immune system. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still poorly characterized. Here, we develop a serum-free protocol to differentiate human induced pluripotent stem cells (hiPSCs) into astrocytes.

View Article and Find Full Text PDF

Objective: To evaluate the long-term effects of treatments used in MS on the T-cell trafficking profile.

Methods: We enrolled 83 patients with MS under fingolimod (FTY), natalizumab (NTZ), dimethyl fumarate (DMF), or other disease-modifying treatments (DMTs). Blood was drawn before treatment onset and up to 36-48 months.

View Article and Find Full Text PDF

Neurodegenerative disorders are a major public health problem because of the high frequency of these diseases. Genome editing with the CRISPR/Cas9 system is making it possible to modify the sequence of genes linked to these disorders. We designed the KamiCas9 self-inactivating editing system to achieve transient expression of the Cas9 protein and high editing efficiency.

View Article and Find Full Text PDF

Background: Epstein-Barr virus (EBV) infection and vitamin D insufficiency are potentially interacting risk factors for multiple sclerosis (MS).

Objectives: To investigate the effect of high-dose vitamin D supplements on antibody levels against the EBV nuclear antigen-1 (EBNA-1) in patients with relapsing-remitting multiple sclerosis (RRMS) and to explore any underlying mechanism affecting anti-EBNA-1 antibody levels.

Methods: This study utilized blood samples from a randomized controlled trial in RRMS patients receiving either vitamin D (14,000 IU/day; n = 30) or placebo ( n = 23) over 48 weeks.

View Article and Find Full Text PDF

Background: Natalizumab, a treatment used in multiple sclerosis (MS), is associated with cases of progressive multifocal leukoencephalopathy (PML).

Objective: We describe two cases of PML in related but not genetically apparented natalizumab-treated MS patients who are stepsisters. Reported cases/outcomes: While Patient 1 developed PML, Patient 2 was on natalizumab and had contacts with Patient 1.

View Article and Find Full Text PDF

The interaction between oxysterols and the G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2) fine-tunes immune cell migration, a mechanism efficiently targeted by several disease-modifying treatments developed to treat multiple sclerosis (MS), such as natalizumab. We previously showed that memory CD4 T lymphocytes migrate specifically in response to 7α,25-dihydroxycholesterol (7α,25-OHC) via EBI2 in the MS murine model experimental autoimmune encephalomyelitis. However, the EBI2 expression profile in human lymphocytes in both healthy and MS donors is unknown.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is thought to be T cell mediated but the mechanisms eliciting such a dysregulated adaptative immune response remain enigmatic.

Objective: To examine the activation profile of antigen-presenting cells (APCs) in MS.

Methods: A total of 98 study subjects were enrolled including patients suffering from relapsing-remitting, secondary- and primary-progressive (PP) MS, other inflammatory neurological diseases, and healthy controls.

View Article and Find Full Text PDF

Objective: To assess longitudinally the antiviral immune response of T cells from patients with multiple sclerosis (MS) treated with fingolimod (FTY) vs other disease-modifying treatments (DMTs).

Methods: We assessed cellular immune responses specific to influenza virus (FLU), JC virus (JCV), and varicella-zoster virus (VZV) using quantification of interferon-γ secretion by enzyme-linked immunospot in patients with MS on FTY (n = 31), including 2 with herpes zoster (HZ), natalizumab (n = 11), and other DMTs (n = 11). We used viral lysates for FLU and VZV and a pool of peptides for FLU, JCV (VP-1), and VZV (IE63).

View Article and Find Full Text PDF

Background/objectives: Neurofilament light chain (NfL) levels in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients correlate with the degree of neuronal injury. To date, little is known about NfL concentrations in the serum of relapsing remitting multiple sclerosis (RRMS) patients and their relationship with CSF levels and magnetic resonance imaging (MRI) measures of disease severity. We aimed to validate the quantification of NfL in serum samples of RRMS, as a biofluid source easily accessible for longitudinal studies.

View Article and Find Full Text PDF

Background: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP).

View Article and Find Full Text PDF

While the gut epithelium represents the largest mucosal tissue, the mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple outcomes that remain poorly understood at the molecular level. Deciphering such events may provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the intestinal immune system include maturation processes prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions.

View Article and Find Full Text PDF