Publications by authors named "Amandine Caruana"

Harmful Algal Blooms involving the dinoflagellate Alexandrium pacificum continue to increase in ecosystems suffering the climate warming and anthropogenic pressure. Changes in the total proteome and physiological traits of the Mediterranean A. pacificum SG C10-3 strain were measured in response to increasing temperature (24 °C, 27 °C, 30 °C) and trace metal contamination (Cu, Pb, Zn, Cd).

View Article and Find Full Text PDF

Turbulence is one of the least investigated environmental factors impacting the ecophysiology of phytoplankton, both at the community and individual species level. Here, we investigated, for the first time, the effect of a turbulence gradient (Reynolds number, from Reλ = 0 to Reλ = 360) on two species of the marine diatom Pseudo-nitzschia and their associated bacterial communities under laboratory conditions. Cell abundance, domoic acid (DA) production, chain formation, and Chl a content of P.

View Article and Find Full Text PDF

The presence of microcystins (MCs) is increasingly being reported in coastal areas worldwide. To provide reliable data regarding this emerging concern, reproducible and accurate methods are required to quantify MCs in salt-containing samples. Herein, we characterized methods of extraction and analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for nine MCs and one nodularin (NOD) variants in both cyanobacteria (intracellular) and dissolved forms (extracellular).

View Article and Find Full Text PDF

HABs involving Alexandrium pacificum have been reported in metal-contaminated ecosystems, suggesting that this distributed species adapts to and/or can tolerate the effects of metals. Modifications in soluble proteomes and PST contents were characterized in two Mediterranean A. pacificum strains exposed to mono- or polymetallic stresses (zinc, lead, copper, cadmium).

View Article and Find Full Text PDF

This paper present the effects of ocean acidification on growth and domoic acid (DA) content of several strains of the toxic Pseudo-nitzschia australis and the non-toxic P. fraudulenta. Three strains of each species (plus two subclones of P.

View Article and Find Full Text PDF

Due to anthropogenic activities, associated with climate change, many freshwater ecosystems are expected to experience an increase in salinity. This phenomenon is predicted to favor the development and expansion of freshwater cyanobacteria towards brackish waters due to their transfer along the estuarine freshwater-marine continuum. Since freshwater cyanobacteria are known to produce toxins, this represents a serious threat for animal and human health.

View Article and Find Full Text PDF

Paralytic shellfish poisoning (PSP) is a human foodborne syndrome caused by the consumption of shellfish that accumulate paralytic shellfish toxins (PSTs, saxitoxin group). In PST-producing dinoflagellates such as spp., toxin synthesis is encoded in the nuclear genome via a gene cluster ().

View Article and Find Full Text PDF

Alexandrium minutum and Alexandrium pacificum are representatives of the dinoflagellate genus that regularly proliferate on the French coasts and other global coastlines. These harmful species may threaten shellfish harvest and human health due to their ability to synthesize neurotoxic alkaloids of the saxitoxin group. However, some dinoflagellates such as A.

View Article and Find Full Text PDF

The transfer of from freshwater to estuaries has been described worldwide and salinity is reported as the main factor controlling the expansion of to coastal environments. Analyzing the expression levels of targeted genes and employing both targeted and non-targeted metabolomic approaches, this study investigated the effect of a sudden salt increase on the physiological and metabolic responses of two toxic strains separately isolated from fresh and brackish waters, respectively, PCC 7820 and 7806. Supported by differences in gene expressions and metabolic profiles, salt tolerance was found to be strain specific.

View Article and Find Full Text PDF

Toxic Pseudo-nitzschia australis strains isolated from French coastal waters were studied to investigate their capacity to adapt to different salinities. Their acclimation to different salinity conditions (10, 20, 30, 35, and 40) was studied on growth, photosynthetic capacity, cell biovolume, and domoic acid (DA) content. The strains showed an ability to acclimate to a salinity range from 20 to 40, with optimal growth rates between salinities 30 and 40.

View Article and Find Full Text PDF

Proliferation of microcystin (MC)-producing in brackish waters has been described in several locations and represents a new concern for public and environmental health. While the impact of a sudden salinity increase on physiology has been studied, less is known about the mechanisms involved in salt tolerance after acclimation. This study aims to compare the physiological responses of two strains of (PCC 7820 and PCC 7806), which were isolated from contrasted environments, to increasing salinities.

View Article and Find Full Text PDF

Several coastal countries including France have experienced serious and increasing problems related to Pseudo-nitzschia toxic blooms. These toxic blooms occur in estuarine and coastal waters potentially subject to fluctuations in salinity. In this study, we document for the first time the viability, growth, photosynthetic efficiency, and toxin production of two strains of Pseudo-nitzschia australis grown under conditions with sudden salinity changes.

View Article and Find Full Text PDF

In Chlamydomonas reinhardtii cells, H2 photoproduction can be induced in conditions of sulfur deprivation in the presence of acetate. The decrease in photosystem II (PSII) activity induced by sulfur deprivation leads to anoxia, respiration becoming higher than photosynthesis, thereby allowing H2 production. Two different electron transfer pathways, one PSII dependent and the other PSII independent, have been proposed to account for H2 photoproduction.

View Article and Find Full Text PDF

In the absence of PSII, non-photochemical reduction of plastoquinones (PQs) occurs following NADH or NADPH addition in thylakoid membranes of the green alga Chlamydomonas reinhardtii. The nature of the enzyme involved in this reaction has been investigated in vitro by measuring chlorophyll fluorescence increase in anoxia and light-dependent O(2) uptake in the presence of methyl viologen. Based on the insensitivity of these reactions to rotenone, a type-I NADH dehydrogenase (NDH-1) inhibitor, and their sensitivity to flavoenzyme inhibitors and thiol blocking agents, we conclude to the involvement of a type-II NADH dehydrogenase (NDH-2) in PQ reduction.

View Article and Find Full Text PDF