Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in , transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive multimalformation disorders named Taybi-Linder (TALS/MOPD1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes, which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis of the ∼700 human genes containing a minor (U12-type) intron had been published as yet.
View Article and Find Full Text PDFMyotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A.
View Article and Find Full Text PDFIdiopathic scoliosis (IS) is a spine deformity that affects approximately 3% of the population. The underlying causes of IS are not well understood, although there is clear evidence that there is a genetic component to the disease. Genetic mapping studies suggest high genetic heterogeneity, but no IS disease-causing gene has yet been identified.
View Article and Find Full Text PDFRoot-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use.
View Article and Find Full Text PDFLateral gene transfers (LGT), species to species transmission of genes by means other than direct inheritance from a common ancestor, have played significant role in shaping prokaryotic genomes and are involved in gain or transfer of important biological processes. Whether LGT significantly contributed to the composition of an animal genome is currently unclear. In nematodes, multiple LGT are suspected to have favored emergence of plant-parasitism.
View Article and Find Full Text PDF