Peptide hormones, a class of pharmacologically active molecules, have a critical role in regulating energy homeostasis. Prohormone convertase 1/3 (also known as PCSK1/3) represents a key enzymatic mechanism in peptide processing, as exemplified with the therapeutic target glucagon-like peptide 1 (GLP-1). However, the full spectrum of peptides generated by PCSK1 and their functional roles remain largely unknown.
View Article and Find Full Text PDFN-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters.
View Article and Find Full Text PDFPeptide hormones and neuropeptides are signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we provide evidence for the endogenous presence of a sequence diverse class of blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence.
View Article and Find Full Text PDFPeptide hormones and neuropeptides are fundamental signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we demonstrate the endogenous presence of a sequence diverse class of orphan, blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence.
View Article and Find Full Text PDFThere is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice.
View Article and Find Full Text PDFN-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genomic associations of four plasma N-acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2351 individuals from the Jackson Heart Study.
View Article and Find Full Text PDFN-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genetic regulation of four plasma N-fatty acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2,351 individuals from the Jackson Heart Study.
View Article and Find Full Text PDFExercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity.
View Article and Find Full Text PDFChemical genetics is a powerful approach for identifying therapeutically active small molecules, but identifying the mechanisms of action underlying hit compounds remains challenging. Chemoproteomic platforms have arisen to tackle this challenge and enable rapid mechanistic deconvolution of small-molecule screening hits. Here, we have screened a cysteine-reactive covalent ligand library to identify hit compounds that impair cell survival and proliferation in nonsmall cell lung carcinoma cells, but not in primary human bronchial epithelial cells.
View Article and Find Full Text PDF