Publications by authors named "Amanda W Y Yung"

A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out () mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids.

View Article and Find Full Text PDF

Gangliosides are glycosphingolipids, which are abundant in brain, are known to modulate ion channels and cell-to-cell communication. Deficiencies can result in aberrant myelination and altered immune responses, which can give rise to neurodevelopmental psychiatric disorders. However, to date, little mechanistic data is available on how ganglioside deficiencies contribute to the behavioural disorders.

View Article and Find Full Text PDF

The drugs currently available for treating epilepsy are only partially effective in managing this condition. Therefore, it is crucial to investigate new pathways that induce and promote epilepsy development. Previously, we found that platelets interact with neuronal glycolipids and actively secrete pro-inflammatory mediators during central nervous system (CNS) pathological conditions such as neuroinflammation and traumatic brain injury (TBI).

View Article and Find Full Text PDF

Twenty years ago, the scientific community exhibited relatively little interest in the study of microglial cells. However, recent technical and conceptual advances in this field have greatly increased interest in the basic biology of these cells within various neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and traumatic brain/spinal cord injuries. The main functions of these cells in the normal central nervous system (CNS) remain poorly understood, despite considerable elucidation of their roles in pathological conditions.

View Article and Find Full Text PDF

Although it was suggested that gangliosides play an important role in the binding of amyloid fragments to neuronal cells, the exact role of gangliosides in Alzheimer's disease (AD) pathology remains unclear. To understand the role of gangliosides in AD pathology in vivo, we crossed st3gal5-deficient (ST3) mice that lack major brain gangliosides GM1, GD1a, GD3, GT1b, and GQ1b with 5XFAD transgenic mice that overexpress 3 mutant human amyloid proteins AP695 and 2 presenilin PS1 genes. We found that ST3 5XFAD mice have a significantly reduced burden of amyloid depositions, low level of neuroinflammation, and did not exhibit neuronal loss or synaptic dysfunction.

View Article and Find Full Text PDF

The process of macrophage polarization is involved in many pathologies such as anti-cancer immunity and autoimmune diseases. Polarized macrophages exhibit various levels of plasticity when M2/M(IL-4) macrophages are reprogrammed into an M1-like phenotype following treatment with IFNγ and/or LPS. At the same time, M1 macrophages are resistant to reprogramming in the presence of M2-like stimuli.

View Article and Find Full Text PDF

In contrast to peripheral macrophages, microglia in the central nervous system (CNS) exhibit a specific deactivated phenotype; however, it is not clear how this phenotype is maintained. Two alternative hypotheses were postulated recently: (a) microglia differ from peripheral macrophages being derived from the yolk sac (YS), whereas peripheral macrophages originate from bone marrow (BM); (b) microglia acquire a specific phenotype under the influence of the CNS microenvironment. We have previously shown that microglia express miR-124, which was also induced in BM-derived macrophages co-cultured with a neurons.

View Article and Find Full Text PDF

It is generally accepted that inflammation within the CNS contributes to neurodegeneration after traumatic brain injury (TBI), but it is not clear how inflammation is initiated in the absence of infection and whether this neuroinflammation is predominantly beneficial or detrimental. We have previously found that brain-enriched glycosphingolipids within neuronal lipid rafts (NLR) induced platelet degranulation and secretion of neurotransmitters and pro-inflammatory factors. In the present study, we compared TBI-induced inflammation and neurodegeneration in wild-type vs.

View Article and Find Full Text PDF

Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages.

View Article and Find Full Text PDF

Rationale: Platelets are known to participate in vascular pathologies; however, their role in neuroinflammatory diseases, such as multiple sclerosis (MS), is unknown. Autoimmune CD4 T cells have been the main focus of studies of MS, although the factors that regulate T-cell differentiation toward pathogenic T helper-1/T helper-17 phenotypes are not completely understood.

Objective: We investigated the role of platelets in the modulation of CD4 T-cell functions in patients with MS and in mice with experimental autoimmune encephalitis, an animal model for MS.

View Article and Find Full Text PDF

Background: Glatiramer acetate (GA, Copaxone, Copolymer-1) is an FDA approved drug for the treatment of MS and it is very effective in suppressing neuroinflammation in experimental autoimmune encephalitis (EAE), an animal model of MS. Although this drug was designed to inhibit pathogenic T cells, the exact mechanism of EAE/MS suppression by GA is still not well understood. Previously we presented evidence that platelets become activated and promote neuroinflammation in EAE, suggesting a possible pathogenic role of platelets in MS and EAE.

View Article and Find Full Text PDF

Despite the classical hormonal effect, estrogen has been reported to mediate neuroprotection in the brain, which leads to the searching of estrogen-like substances for treating neurodegenerative diseases. Flavonoids, a group of natural compounds, are well known to possess estrogenic effects and used to substitute estrogen, that is, phytoestrogen. Flavonoid serves as one of the potential targets for the development of natural supplements and therapeutic drugs against different diseases.

View Article and Find Full Text PDF

ATP functions as an extracellular signaling molecule that is costored and coreleased with neurotransmitters at central and peripheral neuronal synapses. Stimulation by ATP upregulates the expression of synaptic genes in muscle-including the genes for nicotine acetylcholine receptor (α-, δ-, and ε-subunits) and acetylcholinesterase (AChE)-via the P2Y receptor (P2YR), but the trophic response of neurons to the activation of P2YRs is less well understood. We reported that cultured cortical neurons and the developing rat brain expressed different types of P2YRs, and among these the UTP-sensitive P2Y2R was the most abundant.

View Article and Find Full Text PDF

The gene encoding the collagen-tailed subunit (ColQ) of acetylcholinesterase (AChE) contains two distinct promoters that drive the production of two ColQ mRNAs, ColQ-1 and ColQ-1a, in slow- and fast-twitch muscles, respectively. ColQ-1a is expressed at the neuromuscular junction (NMJ) in fast-twitch muscle, and this expression depends on trophic factors supplied by motor neurons signaling via a cAMP-dependent pathway in muscle. To further elucidate the molecular basis of ColQ-1a's synaptic expression, here we investigated the expression and localization of cAMP-responsive element binding protein (CREB) at the synaptic and extra-synaptic regions of fast- and slow-twitch muscles from adult rats.

View Article and Find Full Text PDF