Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.
View Article and Find Full Text PDFBackground: Deep-sea mussels in the subfamily Bathymodiolinae have unique adaptations to colonize hydrothermal-vent and cold-seep environments throughout the world ocean. These invertebrates function as important ecosystem engineers, creating heterogeneous habitat and promoting biodiversity in the deep sea. Despite their ecological significance, efforts to assess the diversity and connectivity of this group are extremely limited.
View Article and Find Full Text PDFIn order to reconstruct the ecosystem structure of chemosynthetic environments in the fossil record, geochemical proxies must be developed. Here, we present a suite of novel compound-specific isotope parameters for tracing chemosynthetic production with a focus on understanding nitrogen dynamics in deep-sea cold seep environments. We examined the chemosymbiotic bivalve Bathymodiolus childressi from three geographically distinct seep sites on the NE Atlantic Margin and compared isotope data to non-chemosynthetic littoral mussels to test whether water depth, seep activity, and/or mussel bed size are linked to differences in chemosynthetic production.
View Article and Find Full Text PDFIn the Caribbean Basin the distribution and diversity patterns of deep-sea scleractinian corals and stylasterid hydrocorals are poorly known compared to their shallow-water relatives. In this study, we examined species distribution and community assembly patterns of scleractinian and stylasterid corals on three high-profile seamounts within the Anegada Passage, a deep-water throughway linking the Caribbean Sea and western North Atlantic. Using remotely operated vehicle surveys conducted on the E/V by the ROV in 2014, we characterized coral assemblages and seawater environmental variables between 162 and 2,157 m on Dog Seamount, Conrad Seamount, and Noroît Seamount.
View Article and Find Full Text PDFDeep-sea corals can create a highly complex, three-dimensional structure that facilitates sediment accumulation and influences adjacent sediment environments through altered hydrodynamic regimes. Infaunal communities adjacent to different coral types, including reef-building scleractinian corals and individual colonies of octocorals, are known to exhibit higher macrofaunal densities and distinct community structure when compared to non-coral soft-sediment communities. However, the coral types have different morphologies, which may modify the adjacent sediment communities in discrete ways.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
December 2016
A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts.
View Article and Find Full Text PDFThe continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
April 2015
Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra).
View Article and Find Full Text PDFTo assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc).
View Article and Find Full Text PDFPlant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0-1 per thousand for delta(13)C and 2-3 per thousand for delta(15)N, among the invertebrates, only nematodes, oligochaetes, and nereid polychaetes from native mangroves exhibited stable isotopes consistent with a mangrove-derived diet.
View Article and Find Full Text PDF