Triple negative breast cancer (TNBC) that fails to respond to neoadjuvant chemotherapy (NACT) can be lethal. Developing effective strategies to eradicate chemoresistant disease requires experimental models that recapitulate the heterogeneity characteristic of TNBC. To that end, we established a biobank of 92 orthotopic patient-derived xenograft (PDX) models of TNBC from the tumors of 75 patients enrolled in the ARTEMIS clinical trial ( NCT02276443 ) at MD Anderson Cancer Center, including 12 longitudinal sets generated from serial patient biopsies collected throughout NACT and from metastatic disease.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection.
View Article and Find Full Text PDFThere is an unmet clinical need for stratification of breast lesions as indolent or aggressive to tailor treatment. Here, single-cell transcriptomics and multiparametric imaging applied to a mouse model of breast cancer reveals that the aggressive tumor niche is characterized by an expanded basal-like population, specialization of tumor subpopulations, and mixed-lineage tumor cells potentially serving as a transition state between luminal and basal phenotypes. Despite vast tumor cell-intrinsic differences, aggressive and indolent tumor cells are functionally indistinguishable once isolated from their local niche, suggesting a role for non-tumor collaborators in determining aggressiveness.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs.
View Article and Find Full Text PDFThe NF-κB transcription factor pathway is a crucial regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been identified in many types of cancer. Downstream of key oncogenic pathways, such as RAS, BCR-ABL, and Her2, NF-κB regulates transcription of target genes that promote cell survival and proliferation, inhibit apoptosis, and mediate invasion and metastasis.
View Article and Find Full Text PDFTransdifferentiation (TD) is a recent advancement in somatic cell reprogramming. The direct conversion of TD eliminates the pluripotent intermediate state to create cells that are ideal for personalized cell therapy. Here we provide evidence that TD-derived induced neural stem cells (iNSCs) are an efficacious therapeutic strategy for brain cancer.
View Article and Find Full Text PDFUnlabelled: Although it is known that mTOR complex 2 (mTORC2) functions upstream of Akt, the role of this protein kinase complex in cancer is not well understood. Through an integrated analysis of cell lines, in vivo models, and clinical samples, we demonstrate that mTORC2 is frequently activated in glioblastoma (GBM), the most common malignant primary brain tumor of adults. We show that the common activating epidermal growth factor receptor (EGFR) mutation (EGFRvIII) stimulates mTORC2 kinase activity, which is partially suppressed by PTEN.
View Article and Find Full Text PDFBredel et al. (2010) recently identified a subset of glioblastomas that harbor monoallelic loss of NFKBIA, which negatively affects patient prognosis. This finding raises new questions as to the role of IκBα and NF-κB in glioblastoma, the relationship between EGFR and NF-κB signaling, and potential therapeutic targets.
View Article and Find Full Text PDF