High-grade gliomas, such as glioblastoma (GBM) and diffuse intrinsic pontine glioma (DIPG), are characterized by an aggressive phenotype with nearly universal local disease progression despite multimodal treatment, which typically includes chemotherapy, radiotherapy, and possibly surgery. Radiosensitizers that have improved the effects of radiotherapy for extracranial tumors have been ineffective for the treatment of GBM and DIPG, in part due to poor blood-brain barrier penetration and rapid intracranial clearance of small molecules. Here, we demonstrate that nanoparticles can provide sustained drug release and minimal toxicity.
View Article and Find Full Text PDFNanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain.
View Article and Find Full Text PDFNew treatments for glioblastoma multiforme (GBM) are desperately needed, as GBM prognosis remains poor, mainly due to treatment resistance, poor distribution of therapeutics in the tumor tissue, and fast metabolism of chemotherapeutic drugs in the brain extracellular space. Convection-enhanced delivery (CED) of nanoparticles (NPs) has been shown to improve the delivery of chemotherapeutic drugs to the tumor bed, providing sustained release, and enhancing survival of animals with intracranial tumors. Here we administered gemcitabine, a nucleoside analog used as a first line treatment for a wide variety of extracranial solid tumors, within squalene-based NPs using CED, to overcome the above-mentioned challenges of GBM treatment.
View Article and Find Full Text PDFObjective: To describe cumulative radiation exposure in a large single-center cohort of children with congenital heart disease (CHD) and identify risk factors for greater exposure.
Study Design: A detailed medical radiation exposure history was collected retrospectively for patients aged <18 years who underwent surgery for CHD between January 1, 2001, and July 22, 2009. Cumulative per patient exposure was quantified as the effective dose in millisieverts (mSv) and annualized (mSv/year).