Publications by authors named "Amanda R Flockton"

Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which was conditionally ablated, (1) in glia (-expressing cells) and (2) in neurons (-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS).

View Article and Find Full Text PDF

Severe fetal growth restriction (FGR) is characterized by increased placental vascular resistance resulting from aberrant angiogenesis. Interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are critical to the complex process of angiogenesis. We have previously found that placental stromal abnormalities contribute to impaired angiogenesis in severe FGR.

View Article and Find Full Text PDF

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability.

View Article and Find Full Text PDF

Background: The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is characterized by abnormal growth and enhanced glycolysis of pulmonary artery endothelial cells. However, the mechanisms underlying alterations in energy production have not been identified.

Methods: Here, we examined the miRNA and proteomic profiles of blood outgrowth endothelial cells (BOECs) from patients with heritable PAH caused by mutations in the bone morphogenetic protein receptor type 2 () gene and patients with idiopathic PAH to determine mechanisms underlying abnormal endothelial glycolysis.

View Article and Find Full Text PDF
Article Synopsis
  • Remodeling of the distal pulmonary artery wall is a key sign of pulmonary hypertension (PH), characterized by significant changes in the adventitia, including increased fibroblast proliferation and macrophage accumulation.
  • The study found that pulmonary hypertension fibroblasts (PH-Fibs) show altered mitochondrial metabolism, resembling a Warburg effect, where pyruvate is converted to lactate due to inhibited pyruvate dehydrogenase and reduced mitochondrial function.
  • Notably, a decline in complex I activity linked to decreased NDUFS4 results in hyperpolarized mitochondria and increased oxidative stress, suggesting that these metabolic changes in fibroblasts may contribute to vascular remodeling in PH beyond the effects of hypoxia alone.
View Article and Find Full Text PDF

Rationale: Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown.

View Article and Find Full Text PDF

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages.

View Article and Find Full Text PDF

Ethanol is a well-established developmental toxicant; however, the mechanism(s) of this toxicity remains unclear. Zebrafish are becoming an important model system for the evaluation of chemical and drug toxicity. In this study, zebrafish embryos were utilized to compare the developmental toxicity resulting from either ethanol or acetaldehyde exposure.

View Article and Find Full Text PDF