Despite protective roles in various type of infection and in would healing, T helper (Th)2 cells are drivers of inflammation in allergic asthma. In this issue of Immunity, Zou et al. demonstrate the crucial involvement of hypoxia inducible factor (HIF)2α in promoting the differentiation of inflammatory Th2 cells, suggesting HIF2α as a promising therapeutic target for the treatment of allergic asthma.
View Article and Find Full Text PDFT cell exhaustion remains a significant barrier to immunotherapeutic success for many patients with solid tumors. Growing evidence suggests that enhanced survival and self-renewal properties of a stem-like precursor T cell population (Tpex) is correlated with a survival advantage in immunotherapy. In a recent study published in Science, Kang and colleagues find three epigenetic regulators commonly mutated in clonal hematopoiesis also control Tpex progression to exhaustion.
View Article and Find Full Text PDFCD8 T cells are critical mediators of antitumor immunity but differentiate into a dysfunctional state, known as T cell exhaustion, after persistent T cell receptor stimulation in the tumor microenvironment (TME). Exhausted T (T) cells are characterized by upregulation of coinhibitory molecules and reduced polyfunctionality. T cells in the TME experience an immunosuppressive metabolic environment via reduced levels of nutrients and oxygen and a buildup of lactic acid.
View Article and Find Full Text PDFNPJ Syst Biol Appl
October 2024
T cells are dynamically regulated immune cells that are implicated in a variety of diseases ranging from infection, cancer and autoimmunity. Recent advancements in sequencing methods have provided valuable insights in the transcriptional and epigenetic regulation of T cells in various disease settings. In this review, we identify the key sequencing-based methods that have been applied to understand the transcriptomic and epigenomic regulation of T cells in diseases.
View Article and Find Full Text PDFSpatial transcriptomics technologies have shed light on the complexities of tissue structures by accurately mapping spatial microenvironments. Nonetheless, a myriad of methods, especially those utilized in platforms like Visium, often relinquish spatial details owing to intrinsic resolution limitations. In response, we introduce TransformerST, an innovative, unsupervised model anchored in the Transformer architecture, which operates independently of references, thereby ensuring cost-efficiency by circumventing the need for single-cell RNA sequencing.
View Article and Find Full Text PDFFungal infections are a global threat; yet, there are no licensed vaccines to any fungal pathogens. Th17 cells mediate immunity to Candida albicans, particularly oropharyngeal candidiasis (OPC), but essential downstream mechanisms remain unclear. In the murine model of OPC, IκBζ (Nfkbiz, a non-canonical NF-κB transcription factor) was upregulated in an interleukin (IL)-17-dependent manner and was essential to prevent candidiasis.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
July 2023
Regulation of interferon-γ is critical to constrain inflammation and mount effective responses to infection and anti-tumor immunity. In this issue of Immunity, Cui et al. identify a distal silencer element that disrupts promoter-enhancer looping, regulating IFN-γ expression and preventing inappropriate inflammation.
View Article and Find Full Text PDFExhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state.
View Article and Find Full Text PDFCD8 T cells are critical for elimination of cancer cells. Factors within the tumor microenvironment (TME) can drive these cells to a hypofunctional state known as exhaustion. The most terminally exhausted T (tT) cells are resistant to checkpoint blockade immunotherapy and might instead limit immunotherapeutic efficacy.
View Article and Find Full Text PDFResponse rates to immunotherapy in solid tumors remain low due in part to the elevated prevalence of terminally exhausted T cells, a hypofunctional differentiation state induced through persistent antigen and stress signaling. However, the mechanisms promoting progression to terminal exhaustion in the tumor remain undefined. Using the low-input chromatin immunoprecipitation sequencing method CUT&RUN, we profiled the histone modification landscape of tumor-infiltrating CD8 T cells throughout differentiation.
View Article and Find Full Text PDFAntigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular patterns (DAMPs) that generate proinflammatory APCs that secrete IL-12, which is a driver of donor Th1 responses, causing graft-versus-host disease (GVHD). Nevertheless, other mechanisms exist to initiate alloreactive T cell responses, as recipients with disrupted DAMP signaling or lacking IL-12 develop GVHD.
View Article and Find Full Text PDFIn a recent issue of Nature, Melenhorst et al. perform an extensive analysis of CAR T cells that persist for ten years in CLL patients. They find a dominant cytotoxic CD4+ population, raising the possibility that CD4+ T cells play an important role in durable CAR T cell therapy.
View Article and Find Full Text PDFThe multiligand receptors megalin () and cubilin () and their endocytic adaptor protein Dab2 () play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of had the greatest transcriptional effect, and nearly all genes whose expression was affected in KO and KO cells were also changed in KO cells.
View Article and Find Full Text PDFExcessive cytokine activity underlies many autoimmune conditions, particularly through the interleukin-17 (IL-17) and tumor necrosis factor-α (TNFα) signaling axis. Both cytokines activate nuclear factor κB, but appropriate induction of downstream effector genes requires coordinated activation of other transcription factors, notably, CCAAT/enhancer binding proteins (C/EBPs). Here, we demonstrate the unexpected involvement of a posttranscriptional "epitranscriptomic" mRNA modification [N6-methyladenosine (mA)] in regulating C/EBPβ and C/EBPδ in response to IL-17A, as well as IL-17F and TNFα.
View Article and Find Full Text PDFT cells are critical for orchestrating appropriate adaptive immune responses and maintaining homeostasis in the face of persistent nonpathogenic Ags. T cell function is controlled in part by environmental signals received upon activation and derived from the tissue environment in which Ag is encountered. Indeed, tissue-specific environments play important roles in controlling the T cell response to Ag, and recent evidence suggests that tissue draining lymph nodes can mirror those local differences.
View Article and Find Full Text PDFCutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models.
View Article and Find Full Text PDFMicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-β.
View Article and Find Full Text PDFRegulatory T (T) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function. At the same time, T cells maintain a strong suppression of effector T cells within the TME.
View Article and Find Full Text PDFCancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation.
View Article and Find Full Text PDFInterleukin-10 (IL-10) is a critical cytokine used by immune cells to suppress inflammation. Paradoxically, immune cell-derived IL-10 can drive insulin resistance in obesity by suppressing adipocyte energy expenditure and thermogenesis. However, the source of IL-10 necessary for the suppression of adipocyte thermogenesis is unknown.
View Article and Find Full Text PDF