Publications by authors named "Amanda Ochoa-Espinosa"

The authors determined the effect of the GLP-1 receptor agonist liraglutide on endothelial surface expression of vascular cell adhesion molecule (VCAM)-1 in murine apolipoprotein E knockout atherosclerosis. Contrast-enhanced ultrasound molecular imaging using microbubbles targeted to VCAM-1 and control microbubbles showed a 3-fold increase in endothelial surface VCAM-1 signal in vehicle-treated animals, whereas in the liraglutide-treated animals the signal ratio remained around 1 throughout the study. Liraglutide had no influence on low-density lipoprotein cholesterol or glycated hemoglobin, but reduced TNF-α, IL-1β, MCP-1, and OPN.

View Article and Find Full Text PDF
Article Synopsis
  • Reversible protein phosphorylation by kinases is essential for multicellular organisms, but studying specific kinase-substrate interactions is challenging due to kinases targeting multiple substrates simultaneously.* -
  • Recent efforts have developed new methods to control kinase activity, yet existing techniques often fail to isolate the effect on individual protein targets.* -
  • This research introduces engineered kinases that allow for targeted phosphorylation of specific proteins, demonstrated in fly embryos, and suggests that this method could be adapted for other kinases and systems to better study their unique interactions.*
View Article and Find Full Text PDF

Clinical translation of ultrasound molecular imaging will depend on the development of binders that can easily be generated, manufactured and coupled, and that are compatible with in vivo use. We describe targeted microbubbles (MBs) using designed ankyrin repeat proteins (DARPins) as a novel class of such translatable binders. Candidate DARPin binders for vascular cell adhesion molecule 1, an endothelial cell adhesion molecule involved in inflammatory processes, were selected using ribosome display and coupled to MBs.

View Article and Find Full Text PDF

Background: Myocarditis can lead to myocyte loss and myocardial fibrosis resulting in dilated cardiomyopathy (DCMP). Currently employed methods for assessing the risk for development of DCMP are inaccurate or rely on invasive myocardial biopsies. We hypothesized that molecular imaging of tissue inflammation with contrast enhanced ultrasound during peak inflammation in myocarditis could predict development of fibrosis and impaired left ventricular function.

View Article and Find Full Text PDF

Objective: Contrast-enhanced ultrasound molecular imaging (CEUMI) of endothelial expression of VCAM (vascular cell adhesion molecule)-1 could improve risk stratification for atherosclerosis. The microbubble contrast agents developed for preclinical studies are not suitable for clinical translation. Our aim was to characterize and validate a microbubble contrast agent using a clinically translatable single-variable domain immunoglobulin (nanobody) ligand.

View Article and Find Full Text PDF

The tracheal system consists of an interconnected network of monolayered epithelial tubes that ensures oxygen transport in the larval and adult body. During tracheal dorsal branch (DB) development, individual DBs elongate as a cluster of cells, led by tip cells at the front and trailing cells in the rear. Branch elongation is accompanied by extensive cell intercalation and cell lengthening of the trailing stalk cells.

View Article and Find Full Text PDF

Background: Cardiac tests for diagnosing myocarditis lack sensitivity or specificity. We hypothesized that contrast-enhanced ultrasound molecular imaging could detect myocardial inflammation and the recruitment of specific cellular subsets of the inflammatory response in murine myocarditis.

Methods And Results: Microbubbles (MB) bearing antibodies targeting lymphocyte CD4 (MBCD4), endothelial P-selectin (MBPSel), or isotype control antibody (MBIso) and MB with a negative electric charge for targeting of leukocytes (MBLc) were prepared.

View Article and Find Full Text PDF

Protein-protein interactions are crucial for cellular homeostasis and play important roles in the dynamic execution of biological processes. While antibodies represent a well-established tool to study protein interactions of extracellular domains and secreted proteins, as well as in fixed and permeabilized cells, they usually cannot be functionally expressed in the cytoplasm of living cells. Non-immunoglobulin protein-binding scaffolds have been identified that also function intracellularly and are now being engineered for synthetic biology applications.

View Article and Find Full Text PDF

A vast diversity of biological systems, ranging from prokaryotes to multicellular organisms, show cell migration behavior. Many of the basic cellular and molecular concepts in cell migration apply to diverse model organisms. Drosophila, with its vast repertoire of tools for imaging and for manipulation, is one of the favorite organisms to study cell migration.

View Article and Find Full Text PDF

Many animal organs, such as the lung, the kidney, the mammary gland, and the vasculature, consist of branched tubular structures that arise through a process known as "branching morphogenesis" that results from the remodeling of epithelial or endothelial sheaths into multicellular tubular networks. In recent years, the combination of molecular biology, forward and reverse genetic approaches, and their complementation by live imaging has started to unravel rules and mechanisms controlling branching processes in animals. Common patterns of branch formation spanning diverse model systems are beginning to emerge that might reflect unifying principles of tubular organ formation.

View Article and Find Full Text PDF

New work shows the instructive role of Src42A kinase in tube size regulation. By inducing polarized cell-shape changes, Src42A promotes tube elongation in the Drosophila tracheal system.

View Article and Find Full Text PDF

Here we report on the generation and in vivo analysis of a series of loss-of-function mutants for the Drosophila ArfGEF, Gartenzwerg. The Drosophila gene gartenzwerg (garz) encodes the orthologue of mammalian GBF1. garz is expressed ubiquitously in embryos with substantially higher abundance in cells forming diverse tubular structures such as salivary glands, trachea, proventriculus or hindgut.

View Article and Find Full Text PDF

The Bicoid (Bcd) transcription factor is distributed as a long-range concentration gradient along the anterior posterior (AP) axis of the Drosophila embryo. Bcd is required for the activation of a series of target genes, which are expressed at specific positions within the gradient. Here we directly tested whether different concentration thresholds within the Bcd gradient establish the relative positions of its target genes by flattening the gradient and systematically varying expression levels.

View Article and Find Full Text PDF

Complex networks of transcriptional interactions control the processes of animal development. These networks begin with broad positional information that patterns the cells of the early embryo, and end with precise expression profiles that provide the functions of fully differentiated cells. At the heart of these networks are cis-regulatory modules (CRMs), which contain binding sites for regulatory proteins and control the spatial and temporal expression of genes within the network.

View Article and Find Full Text PDF

The maternal morphogen Bicoid (Bcd) is distributed in an embryonic gradient that is critical for patterning the anterior-posterior (AP) body plan in Drosophila. Previous work identified several target genes that respond directly to Bcd-dependent activation. Positioning of these targets along the AP axis is thought to be controlled by cis-regulatory modules (CRMs) that contain clusters of Bcd-binding sites of different "strengths.

View Article and Find Full Text PDF