Publications by authors named "Amanda Mikels"

Soft-tissue sarcomas are a group of malignant tumours whose clinical management is complicated by morphological heterogeneity, inadequate molecular markers and limited therapeutic options. Receptor tyrosine kinases (RTKs) have been shown to play important roles in cancer, both as therapeutic targets and as prognostic biomarkers. An initial screen of gene expression data for 48 RTKs in 148 sarcomas showed that ROR2 was expressed in a subset of leiomyosarcoma (LMS), gastrointestinal stromal tumour (GIST) and desmoid-type fibromatosis (DTF).

View Article and Find Full Text PDF

We have identified a new role for the matrix enzyme lysyl oxidase-like-2 (LOXL2) in the creation and maintenance of the pathologic microenvironment of cancer and fibrotic disease. Our analysis of biopsies from human tumors and fibrotic lung and liver tissues revealed an increase in LOXL2 in disease-associated stroma and limited expression in healthy tissues. Targeting LOXL2 with an inhibitory monoclonal antibody (AB0023) was efficacious in both primary and metastatic xenograft models of cancer, as well as in liver and lung fibrosis models.

View Article and Find Full Text PDF

In this report, we assessed the steady-state enzymatic activity of lysyl oxidase-like 2 (LOXL2) against the substrates 1,5-diaminopentane (DAP), spermine, and fibrillar type I collagen. We find that both DAP and spermine are capable of activating LOXL2 to the same extent and have similar Michaelis constants (K(m) approximately 1 mm) and catalytic rates (k(cat) approximately 0.02 s(-1)).

View Article and Find Full Text PDF

Muscle stem (satellite) cells are relatively resistant to cell-autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P-Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor-beta (TGF-beta) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses.

View Article and Find Full Text PDF

The Wnts include a large family of secreted proteins that serve as important signals during embryonic development and adult homeostasis. In the most well understood Wnt signaling pathway, Wnt binding to Frizzled and low density lipoprotein receptor-related protein induces beta-catenin protein stabilization and entry into the nucleus, resulting in changes in target gene transcription. Emerging evidence suggests that Wnt5a can inhibit Wnt/beta-catenin signaling through interaction with the receptor Ror2.

View Article and Find Full Text PDF

Wnt signaling has been demonstrated to regulate diverse cell processes throughout the development of the Caenorhabditis elegans embryo. This chapter describes methods that have been used to investigate some of these Wnt-dependent processes: endoderm specification, mitotic spindle orientation, and cell migration.

View Article and Find Full Text PDF

An unanswered question in the field of signal transduction research is how different signaling pathways are activated with strict specificity in a temporally and spatially controlled manner. Because extracellular ligands and membrane receptors constitute the first signaling modalities for most pathways, selectivity in ligand-receptor binding likely dictates the outcome of downstream signaling events. Unfortunately, possible complexities underlying ligand-receptor interactions are often overlooked.

View Article and Find Full Text PDF

Wnt5a is an important factor patterning many aspects of early development, including the lung. We find pulmonary non-canonical Wnt5a uses Ror2 to control patterning of both distal air and vascular tubulogenesis (alveolarization). Lungs with mis/overexpressed Wnt5a develop with severe pulmonary hypoplasia associated with altered expression patterns of Shh, L-CAM, fibronectin, VEGF and Flk1.

View Article and Find Full Text PDF

Reciprocal epithelial-mesenchymal interactions shape site-specific development of skin. Here we show that site-specific HOX expression in fibroblasts is cell-autonomous and epigenetically maintained. The distal-specific gene HOXA13 is continually required to maintain the distal-specific transcriptional program in adult fibroblasts, including expression of WNT5A, a morphogen required for distal development.

View Article and Find Full Text PDF

The Wnts comprise a large class of secreted proteins that control essential developmental processes such as embryonic patterning, cell growth, migration, and differentiation. In the most well-understood "canonical" Wnt signaling pathway, Wnt binding to Frizzled receptors induces beta-catenin protein stabilization and entry into the nucleus, where it complexes with T-cell factor/lymphoid enhancer factor transcription factors to affect the transcription of target genes. In addition to the canonical pathway, evidence for several other Wnt signaling pathways has accumulated, in particular for Wnt5a, which has therefore been classified as a noncanonical Wnt family member.

View Article and Find Full Text PDF

The maintenance and self-renewal of hematopoietic stem cells (HSC) in culture is a central focus of hematopoietic stem cell research. In vivo, the balance between HSC differentiation, apoptosis, and self-renewal is regulated at the endosteal surface niche in the bone marrow (BM). In feeder-free cultures, the fate of HSC is affected by growth factors/interleukins and serum, which affect the balance between self-renewal, differentiation, and apoptosis and lead to the rapid loss of multipotent HSC.

View Article and Find Full Text PDF