Publications by authors named "Amanda Martino"

Future manned space travel will require efficient recycling of nutrients from organic waste back into food production. Microbial systems are a low-energy, efficient means of nutrient recycling, but their use in a life support system requires predictability and reproducibility in community formation and reactor performance. To assess the reproducibility of microbial community formation in fixed-film reactors, we inoculated replicate anaerobic reactors from two methanogenic inocula: a lab-scale fixed-film, plug-flow anaerobic reactor and an acidic transitional fen.

View Article and Find Full Text PDF

Characterize the working memory (WM) profile of children and youth who have experienced concussion by systematically synthesizing existing literature on the neuropsychological outcomes of these injuries. Implemented a peer-reviewed search strategy combining key concepts of concussion/mild traumatic brain injury (mTBI), WM, and pediatrics across MedLine, Embase, PsycINFO, and CINAHL. Included studies written in English with extractable results on a WM outcome measure in individuals aged 21 and under who experienced concussion.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the diversity and metabolic capabilities of archaea in marine subsurface sediments from the Costa Rica margin, revealing 31 metagenome-assembled genomes (MAGs) across six different archaeal lineages.
  • It highlights the potential for Lokiarchaeota to anaerobically degrade hydrocarbons, suggesting potential symbiotic relationships with bacteria that use nitrate, nitrite, and sulfite.
  • Additionally, it describes the Bathyarchaeota lineage's unique incomplete methanogenesis pathway and its potential link between methanogenic and acetogenic processes, enhancing our understanding of marine benthic archaea.
View Article and Find Full Text PDF

A degenerate polymerase chain reaction (PCR)-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. While optimized here for use with Roche 454 technology, the general framework presented may be applicable to other next generation sequencing systems as well (e.g.

View Article and Find Full Text PDF