Environ Monit Assess
June 2024
Aquatic humic substances (AHS) are defined as an important components of organic matter, being composed as small molecules in a supramolecular structure and can interact with metallic ions, thereby altering the bioavailability of these species. To better understand this behavior, AHS were extracted and characterized from Negro River, located near Manaus city and Carú River, that is situated in Itacoatiara city, an area experiencing increasing anthropogenic actions; both were characterized as blackwater rivers. The AHS were characterized by C nuclear magnetic ressonance and thermochemolysis GC-MS to obtain structural characteristics.
View Article and Find Full Text PDFForest restoration mitigates climate change by removing CO and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil.
View Article and Find Full Text PDFIn this work, we evaluated the potential application of fluorescence spectroscopy, associated with the canonical polyadic/parallel factor analysis and principal component analysis, to monitor the dissolved organic matter (DOM) generated from a slaughterhouse industry. During the monitoring process, we analyzed the residual water at the entrance and exit sites of the slaughterhouse effluent treatment as well as downstream and upstream the effluent receiving water body of a local river. The results revealed that the fluorescence analysis was able to identify proteins, chlorophylls, and humic substances at the entrance and exit sites of the slaughterhouse treatment plant and humic substances at the river water bodies.
View Article and Find Full Text PDFSoil organic matter (SOM) plays a key role in the global carbon and nitrogen cycles. Soil biogeochemistry is regularly studied by extracting the base-soluble fractions of SOM: acid-insoluble humic acid (HA) and acid-soluble fulvic acid (FA). Electrospray ionization-Fourier transform-ion cyclotron resonance-mass spectrometry (ESI-FT-ICR-MS) is commonly utilized for molecularly characterizing these fractions.
View Article and Find Full Text PDFSci Total Environ
April 2022
Understanding the chemical make-up of soils and their structure is critical for constraining the role of soil organic matter (SOM) into the global biogeochemical cycles, as well as to understand the capability of SOM to sequester carbon and mitigate greenhouse gas emissions. Here, we use two-dimensional H-C heteronuclear single quantum coherence nuclear magnetic resonance (2D H-C HSQC NMR) spectroscopy to structurally characterize the most refractory component of SOM, the humic acid (HA). The observations from 2D H-C HSQC NMR were coupled with lignin phenol and fatty acid measurements using tetramethylammonium hydroxide (TMAH) thermochemolysis - two-dimensional gas chromatography - mass spectrometry (TMAH-GC × GC-MS).
View Article and Find Full Text PDFOrganic matter plays many roles in the soil ecosystem. One property of the substance concerns the metal complexation and interaction with organic contaminants. In this sense, the humic substances (HS), a heterogeneous mixture of compounds, naturally derived from degradation of biomass, have been widely studied in environmental sciences.
View Article and Find Full Text PDFKnowledge of the interactions of soil organic matter (SOM) with metal species is important in order to obtain information concerning the fates of the metals in environment, whose reactive functional groups present in SOM can provide high complexation capacity. The aim of this study was to evaluate the interactions involving humic acids (HA) and fulvic acids (FA), extracted from Amazonian soils, with Cu(II) and Al(III) ions, using fluorescence quenching spectroscopy. The obtained results showed that the data for the humic fractions of the Amazonian Spodosols could be fitted with one to one complexation model, which provided the best representation of the changes in fluorescence quenching after addition of Cu(II) or Al(III) ions.
View Article and Find Full Text PDFTime-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region.
View Article and Find Full Text PDFCharacteristics of soil organic matter (SOM) are important, especially in the Amazon region, which represents one of the world's most relevant carbon reservoirs. In this work, the concentrations of carbon and differences in its composition (humification indexes) were evaluated and compared for several horizons (0 to 390cm) of three typical Amazonian podzol profiles. Fluorescence spectroscopy was used to investigate the humic acid (HA) fractions of SOM isolated from the different samples.
View Article and Find Full Text PDFSoil organic matter (SOM) is a complex mixture of molecules with different physicochemical properties, with humic substances (HS) being the main component as it represents around 20-50% of SOM structure. Soil of the Amazon region is considered one of the larger carbon pools of the world; thus, studies of the humic fractions are important for understanding the dynamics of organic matter (OM) in these soils. The aim of this study was to use laser-induced fluorescence spectroscopy (LIFS) and a combination of excitation-emission matrix (EEM) fluorescence with Parallel Factor Analysis (CP/PARAFAC) to assess the characteristics of humin (HU) extracted from Amazonian soils.
View Article and Find Full Text PDFHumic substances (HS) vary according to the physical and chemical factors present in the environment. Thus, the characterization of HS is very important because it improves the understanding of the groups that comprise the chemical structure. Sediment HS were extracted from four locations representative of sugar cane cultivation, pasture, urban area and the impoundment of the Água Vermelha Hydroelectric Power Plant.
View Article and Find Full Text PDF