Publications by authors named "Amanda M Goh"

The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance.

View Article and Find Full Text PDF

The number of newly formed neurons declines rapidly during aging, and this decrease in neurogenesis is associated with decreased function of neural stem/progenitor cells (NPCs). Here, we determined that a WIP1-dependent pathway regulates NPC differentiation and contributes to the age-associated decline of neurogenesis. Specifically, we found that WIP1 is expressed in NPCs of the mouse subventricular zone (SVZ) and aged animals with genetically enhanced WIP1 expression exhibited higher NPC numbers and neuronal differentiation compared with aged WT animals.

View Article and Find Full Text PDF

By using a phage display derived peptide as an initial template, compounds have been developed that are highly specific against Mdm2/Mdm4. These compounds exhibit greater potency in p53 activation and protein-protein interaction assays than a compound derived from the p53 wild-type sequence. Unlike Nutlin, a small molecule inhibitor of Mdm2/Mdm4, the phage derived compounds can arrest cells resistant to p53 induced apoptosis over a wide concentration range without cellular toxicity, suggesting they are highly suitable for cyclotherapy.

View Article and Find Full Text PDF

Understanding how the tumor suppressor p53 induces cell cycle arrest or apoptosis is critical for developing chemotherapeutic strategies. We have generated targeted transgenic reporter mice with which we can study p53 activity at specific promoters, and propose a model in which p53 protein conformation is key to target gene selection.

View Article and Find Full Text PDF

The p53 transcription factor modulates gene expression programs that induce cell cycle arrest, senescence, or apoptosis, thereby preventing tumorigenesis. However, the mechanisms by which these fates are selected are unclear. Our objective is to understand p53 target gene selection and, thus, enable its optimal manipulation for cancer therapy.

View Article and Find Full Text PDF

Embryonic stem (ES) cells are invaluable for their therapeutic potential as well as for the study of early development. Their clinical use demands an understanding of ES cell differentiation, particularly with respect to cell proliferation and the maintenance of genomic integrity, processes for which the transcription factor p53 is essential. However, although the function of p53 as a tumor suppressor has been extensively studied, its role in ES cell biology has not been clearly elucidated.

View Article and Find Full Text PDF

Mutations in the TP53 (p53) gene are present in a large fraction of human tumours, which frequently express mutant p53 proteins at high but heterogeneous levels. The clinical significance of this protein accumulation remains clouded. Mouse models bearing knock-in mutations of p53 have established that the mutant p53 proteins can drive tumour formation, invasion and metastasis through dominant negative inhibition of wild-type p53 as well as through gain of function or 'neomorphic' activities that can inhibit or activate the function of other proteins.

View Article and Find Full Text PDF

Background: The delivery of ubiquitinated proteins to the proteasome for degradation is a key step in the regulation of the ubiquitin-proteasome pathway, yet the mechanisms underlying this step are not understood in detail. The Rad23 family of proteins is known to bind ubiquitinated proteins through its two ubiquitin-associated (UBA) domains, and may participate in the delivery of ubiquitinated proteins to the proteasome through docking via the Rad23 ubiquitin-like (UBL) domain.

Results: In this study, we investigate how the interaction between the UBL and UBA domains may modulate ubiquitin recognition and the delivery of ubiquitinated proteins to the proteasome by autoinhibition.

View Article and Find Full Text PDF

Many biological processes rely on targeted protein degradation, the dysregulation of which contributes to the pathogenesis of various diseases. Ubiquitin plays a well-established role in this process, in which the covalent attachment of polyubiquitin chains to protein substrates culminates in their degradation via the proteasome. The three-dimensional structural topology of ubiquitin is highly conserved as a domain found in a variety of proteins of diverse biological function.

View Article and Find Full Text PDF

Ubiquitin is a prominent regulatory protein in numerous biological processes, including targeted protein degradation, endocytic sorting, transcriptional control, intranuclear localization, and retroviral virion budding. Ubiquitin-associated (UBA) domains, ubiquitin interacting motifs (UIM), and coupling of ubiquitin conjugation to ER degradation (CUE) motifs have been identified as ubiquitin receptors. The DNA repair protein hHR23a has two UBA domains that can each bind ubiquitin in addition to an N-terminal UBL domain that binds S5a and S2, two components of the 26S proteasome.

View Article and Find Full Text PDF

The Rad23 family of proteins, including the human homologs hHR23a and hHR23b, stimulates nucleotide excision repair and has been shown to provide a novel link between proteasome-mediated protein degradation and DNA repair. In this work, we illustrate how the proteasomal subunit S5a regulates hHR23a protein structure. By using NMR spectroscopy, we have elucidated the structure and dynamic properties of the 40-kDa hHR23a protein and show it to contain four structured domains connected by flexible linker regions.

View Article and Find Full Text PDF

The 26S proteasome is essential for the proteolysis of proteins that have been covalently modified by the attachment of polyubiquitinated chains. Although the 20S core particle performs the degradation, the 19S regulatory cap complex is responsible for recognition of polyubiquitinated substrates. We have focused on how the S5a component of the 19S complex interacts with different ubiquitin-like (ubl) modules, to advance our understanding of how polyubiquitinated proteins are targeted to the proteasome.

View Article and Find Full Text PDF