The balance between neutrophil serine proteases (NSPs) and protease inhibitors (PIs) in the lung is a critical determinant for a number of chronic inflammatory lung diseases such as chronic obstructive pulmonary disease, cystic fibrosis and acute lung injury. During activation at inflammatory sites, excessive release of NSPs such as human neutrophil elastase (HNE), proteinase 3 (Pr3) and cathepsin G (CatG), leads to destruction of the lung matrix and continued propagation of acute inflammation. Under normal conditions, PIs counteract these effects by inactivating NSPs; however, in chronic inflammatory lung diseases, there are insufficient amounts of PIs to mitigate damage.
View Article and Find Full Text PDFFrom a collection of marine cyanobacteria made in the Coiba National Park along the Pacific coast of the Republic of Panama a novel cyclic depsipeptide, given the trivial name medusamide A, has been isolated and fully characterized. Medusamide A contains four contiguous β-amino acid (2R,3R)-3-amino-2-methylhexanoic acid (Amha) residues. This is the first report of multiple Amha residues and contiguous β-amino acid residues within a single cyclic peptide-type natural product.
View Article and Find Full Text PDFNumerous therapeutic applications have been proposed for molecules that bind heparin-binding proteins. Development of such compounds has primarily focused on optimizing the degree and orientation of anionic groups on a scaffold, but utility of these polyanions has been diminished by their typically large size and non-specific interactions with many proteins. In this study -arylacyl sulfonated aminoglycosides were synthesized and evaluated for their ability to selectively inhibit structurally similar bacterial and human topoisomerases.
View Article and Find Full Text PDFThe marine environment has been a source of more than 20,000 inspirational natural products discovered over the past 50 years. From these efforts, 9 approved drugs and 12 current clinical trial agents have been discovered, either as natural products or as molecules inspired from the natural product structure. To a significant degree, these have come from collections of marine invertebrates largely obtained from shallow-water tropical ecosystems.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
September 2012
Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenylphosphonium (SkQ1), in bovine aortic endothelial cells.
View Article and Find Full Text PDFSynthesis of amphiphilic oligosaccharides is problematic because traditional methods for separating and purifying oligosaccharides, including sulfated oligosaccharides, are generally not applicable to working with amphiphilic sugars. We report here RPIP-LC and LC-MS methods that enable the synthesis, separation, and characterization of amphiphilic N-arylacyl O-sulfonated aminoglycosides, which are being pursued as small-molecule glycosaminoglycan mimics. The methods described in this work for separating and characterizing these amphiphilic saccharides are further applied to a number of uses: monitoring the progression of sulfonation reactions with analytical RP-HPLC, characterizing sulfate content for individual molecules with ESI-MS, determining the degree of sulfation for products having mixed degrees of sulfation with HPLC and LC-MS, and purifying products with benchtop C18 column chromatography.
View Article and Find Full Text PDFTropical parasitic and infectious diseases, such as leishmaniasis, pose enormous global health threats, but are largely neglected in commercial drug discovery programs. However, the Panama International Cooperative Biodiversity Group (ICBG) has been working to identify novel treatments for malaria, Chagas' disease, and leishmaniasis through an investigation of plants and microorganisms from Panama. We have pursued activity-guided isolation from an extract of Lyngbya majuscula that was found to be active against leishmaniasis.
View Article and Find Full Text PDF