Publications by authors named "Amanda M Erkelens"

The binding constant is an important characteristic of a DNA-binding protein. A large number of methods exist to measure the binding constant, but many of those methods have intrinsic flaws that influence the outcome of the characterization. Tethered particle motion (TPM) is a simple, cheap, and high-throughput single-molecule method that can be used to measure binding constants of proteins binding to DNA reliably, provided that they distort DNA.

View Article and Find Full Text PDF

Bacterial genomes are folded and organized into compact yet dynamic structures, called nucleoids. Nucleoid orchestration involves many factors at multiple length scales, such as nucleoid-associated proteins and liquid-liquid phase separation, and has to be compatible with replication and transcription. Possibly, genome organization plays an intrinsic role in transcription regulation, in addition to classical transcription factors.

View Article and Find Full Text PDF

In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood.

View Article and Find Full Text PDF

In archaea, histones play a role in genome compaction and are involved in transcription regulation. Whereas archaeal histones bind DNA without sequence specificity, they bind preferentially to DNA containing repeats of alternating A/T and G/C motifs. These motifs are also present on the artificial sequence "Clone20," a high-affinity model sequence for binding of the histones from .

View Article and Find Full Text PDF

Nucleoid-associated proteins (NAPs) play a central role in chromosome organization and environment-responsive transcription regulation. The Bacillus subtilis-encoded NAP Rok binds preferentially AT-rich regions of the genome, which often contain genes of foreign origin that are silenced by Rok binding. Additionally, Rok plays a role in chromosome architecture by binding in genomic clusters and promoting chromosomal loop formation.

View Article and Find Full Text PDF

Bacterial chromosome structure is, to a great extent, organized by a diverse group of proteins collectively referred to as nucleoid-associated proteins (NAPs). Many NAPs have been well studied in , including Lsr2, HupA, HupS, and sIHF. Here, we show that SCO1839 represents a novel family of NAPs and recognizes a consensus sequence consisting of GATC followed by (A/T)T.

View Article and Find Full Text PDF

Horizontal gene transfer facilitates dissemination of favourable traits among bacteria. However, foreign DNA can also reduce host fitness: incoming sequences with a higher AT content than the host genome can misdirect transcription. Xenogeneic silencing proteins counteract this by modulating RNA polymerase binding.

View Article and Find Full Text PDF

H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA.

View Article and Find Full Text PDF

Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition.

View Article and Find Full Text PDF

Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone-DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an 'endless' histone-protein core.

View Article and Find Full Text PDF