Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes.
View Article and Find Full Text PDFHeat shock proteins (HSP) are critical elements for the preservation of cellular homeostasis by participating in an array of biological processes. In addition, HSP play an important role in cellular protection from various environmental stresses. HSP are part of a large family of different molecular mass polypeptides, displaying various expression patterns, subcellular localizations, and diversity functions.
View Article and Find Full Text PDFHeat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment.
View Article and Find Full Text PDFMolecular chaperones and co-chaperones play an essential role in the life cycles of protozoa belonging to the genus Leishmania. The small glutamine-rich TPR-containing protein (SGT) is a co-chaperone that can be divided into three domains: N-terminal, tetratricopeptide (TPR) and C-terminal. The TPR domain is responsible for interactions with both Hsp70 and Hsp90; however, the mechanism of interaction and the functionality of SGT are unclear.
View Article and Find Full Text PDF