Publications by authors named "Amanda L Higginbotham"

We study the solubility and dispersibility of as-produced and purified HiPco single-walled carbon nanotubes (SWNTs). Variation in specific operating conditions of the HiPco process are found to lead to significant differences in the respective SWNT solubilities in oleum and surfactant suspensions. The diameter distributions of SWNTs dispersed in surfactant solutions are batch-dependent, as evidenced by luminescence and Raman spectroscopies, but are identical for metallic and semiconducting SWNTs within a batch.

View Article and Find Full Text PDF

Graphene combines unique electronic properties and surprising quantum effects with outstanding thermal and mechanical properties. Many potential applications, including electronics and nanocomposites, require that graphene be dispersed and processed in a fluid phase. Here, we show that graphite spontaneously exfoliates into single-layer graphene in chlorosulphonic acid, and dissolves at isotropic concentrations as high as approximately 2 mg ml(-1), which is an order of magnitude higher than previously reported values.

View Article and Find Full Text PDF

Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt % GO with polycarbonate (PC), acrylonitrile butadiene styrene, and high-impact polystyrene for the purpose of evaluating the flammability reduction and material properties of the resulting systems. The overall morphology and dispersion of GO within the polymer nanocomposites were studied by scanning electron microscopy and optical microscopy; GO was found to be well-dispersed throughout the matrix without the formation of large aggregates. Mechanical testing was performed using dynamic mechanical analysis to measure the storage modulus, which increased for all polymer systems with increased GO loading.

View Article and Find Full Text PDF

An improved method is described for the production of graphene oxide nanoribbons (GONRs) via longitudinal unzipping of multiwalled carbon nanotubes. The method produces GONRs with fewer defects and/or holes on the basal plane, maintains narrow ribbons <100 nm wide, and maximizes the high aspect ratio. Changes in the reaction conditions such as acid content, time, and temperature were investigated.

View Article and Find Full Text PDF

Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C.

View Article and Find Full Text PDF