Publications by authors named "Amanda L Gunawan"

Article Synopsis
  • Coenzyme Q (CoQ) is super important for helping our cells create energy, especially in special fat tissues called brown adipose tissues (BAT).
  • When there’s not enough CoQ, it can cause problems in the body, and scientists are still figuring out how this affects different tissues.
  • Surprisingly, even with low levels of UCP1 (a protein in BAT), CoQ deficiency can actually boost metabolism and prevent weight gain when eating high-fat diets, showing CoQ's important role in managing energy in our bodies.
View Article and Find Full Text PDF

Coenzyme Q (CoQ, aka ubiquinone) is a key component of the mitochondrial electron transport chain (ETC) and membrane-incorporated antioxidant. CoQ10 deficiencies encompass a heterogeneous spectrum of clinical phenotypes and can be caused by hereditary mutations in the biosynthesis pathway or result from pharmacological interventions such as HMG-CoA Reductase inhibitors, and statins, which are widely used to treat hypercholesterolemia and prevent cardiovascular disease. How CoQ deficiency affects individual tissues and cell types, particularly mitochondrial-rich ones such as brown adipose tissue (BAT), has remained poorly understood.

View Article and Find Full Text PDF

Heme regulatory motifs (HRMs) are found in a variety of proteins with diverse biological functions. In heme oxygenase-2 (HO2), heme binds to the HRMs and is readily transferred to the catalytic site in the core of the protein. To further define this heme transfer mechanism, we evaluated the ability of GAPDH, a known heme chaperone, to transfer heme to the HRMs and/or the catalytic core of HO2.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from enteroendocrine cells (EECs) in response to nutrient ingestion and lower blood glucose levels by stimulation of insulin secretion and thus are defined as incretins. GLP-1 receptor (GLP-1R) expression has been identified on enteric neurons that include intrinsic afferent neurons, extrinsic spinal, and vagal sensory afferents but has not been shown to have an incretin effect through these nerves. GLP-1 and GIP enter the mesenteric lymphatic fluid (MLF) after a meal via the interstitial fluid (IF) from local tissue secretion and/or blood capillaries.

View Article and Find Full Text PDF

Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin.

View Article and Find Full Text PDF