Publications by authors named "Amanda L Elliott"

Article Synopsis
  • * A large study involving nearly 10,000 DCM cases and close to a million controls identified 70 significant genetic locations linked to the disease, revealing the importance of heart muscle cells in its development.
  • * The research also indicates that factors like higher body weight and blood pressure may contribute to DCM, and genetic risk scores can help predict the condition across different populations.
View Article and Find Full Text PDF
Article Synopsis
  • Large-scale sequencing has opened up new ways to study rare genetic variations and their impact on human traits across diverse populations.
  • Researchers analyzed data from three major biobanks, including the All of Us program, to perform gene-based testing for 601 diseases in nearly 750,000 individuals, revealing 363 significant genetic associations linked to various diseases.
  • The findings emphasized the importance of including diverse ancestries in genetic research, showcasing how certain genes like UBR3 and YLPM1 are associated with cardiovascular and psychiatric conditions, and suggested that effects of rare variants are consistent across different ancestry groups.
View Article and Find Full Text PDF

Introduction: We investigated cross-sectional relationships between arthritis or joint-related pain intensity and subjective cognitive decline in middle-aged and older adults.

Methods: The sample consisted of 30,150 adults ⩾age 45 years with self-reported arthritis or joint conditions who completed key variables in the 2015 wave of the Behavioral Risk Factor Surveillance System.

Results: Using weighted data, 94.

View Article and Find Full Text PDF

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.

View Article and Find Full Text PDF

African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.

View Article and Find Full Text PDF

By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation.

View Article and Find Full Text PDF

Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant).

View Article and Find Full Text PDF

Dissecting the genetic basis of disease risk requires measuring all forms of genetic variation, including SNPs and copy number variants (CNVs), and is enabled by accurate maps of their locations, frequencies and population-genetic properties. We designed a hybrid genotyping array (Affymetrix SNP 6.0) to simultaneously measure 906,600 SNPs and copy number at 1.

View Article and Find Full Text PDF