Publications by authors named "Amanda K W Buck"

Purpose: Pediatric and adult patients with sickle cell anemia (SCA) are at increased risk of stroke and cerebrovascular accident. In the general adult population, there is a relationship between arterial hemodynamics and pathology; however, this relationship in SCA patients remains to be elucidated. The aim of this work was to characterize circle of Willis hemodynamics in patients with SCA and quantify the impact of viscosity choice on pathophysiologically-relevant hemodynamics measures.

View Article and Find Full Text PDF

An implantable artificial kidney using a hemofilter constructed from an array of silicon membranes to provide ultrafiltration requires a suitable blood flow path to ensure stable operation in vivo. Two types of flow paths distributing blood to the array of membranes were evaluated: parallel and serpentine. Computational fluid dynamics (CFD) simulations were used to guide the development of the blood flow paths.

View Article and Find Full Text PDF

A major challenge in developing blood-contacting medical devices is mitigating thrombogenicity of an intravascular device. Thrombi may interfere with device function or embolize from the device to occlude distant vascular beds with catastrophic consequences. Chemical interactions between plasma proteins and bioengineered surface occur at the nanometer scale; however, continuum models of blood predict local shear stresses that lead to platelet activation or aggregation and thrombosis.

View Article and Find Full Text PDF

Quantitative magnetic resonance imaging (qMRI) describes the development and use of MRI to quantify physical, chemical, and/or biological properties of living systems. Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multi-faceted pathology. The goal of this protocol is to characterize this pathology using qMRI methods.

View Article and Find Full Text PDF

The mechanical functions of muscles involve the generation of force and the actuation of movement by shortening or lengthening under load. These functions are influenced, in part, by the internal arrangement of muscle fibers with respect to the muscle's mechanical line of action. This property is known as muscle architecture.

View Article and Find Full Text PDF

Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC.

View Article and Find Full Text PDF

Purpose: To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI).

Materials And Methods: 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level.

View Article and Find Full Text PDF

Muscle diseases commonly have clinical presentations of inflammation, fat infiltration, fibrosis, and atrophy. However, the results of existing laboratory tests and clinical presentations are not well correlated. Advanced quantitative MRI techniques may allow the assessment of myo-pathological changes in a sensitive and objective manner.

View Article and Find Full Text PDF

Myeloperoxidase (MPO)-derived hypochlorous acid induces changes in HDL function via redox modifications at the level of apolipoprotein A-I (apoA-I). As 4F and apoA-I share structural and functional properties, we tested the hypothesis that 4F acts as a reactive substrate for hypochlorous acid (HOCl). 4F reduced the HOCl-mediated oxidation of the fluorescent substrate APF in a concentration-dependent manner (ED(50) ∼ 56 ± 3 μM).

View Article and Find Full Text PDF

A skeletal muscle's function is strongly influenced by the internal organization and geometric properties of its fibers, a property known as muscle architecture. Diffusion-tensor magnetic resonance imaging-based fiber tracking provides a powerful tool for non-invasive muscle architecture studies, has three-dimensional sensitivity, and uses a fixed frame of reference. Significant advances have been made in muscle fiber tracking technology, including defining seed points for fiber tracking, quantitatively characterizing muscle architecture, implementing denoising procedures, and testing validity and repeatability.

View Article and Find Full Text PDF