Publications by authors named "Amanda K Andriola Silva"

There is a great deal of interest in the development of nanoplatforms gathering versatility and multifunctionality. The strategy reported herein meets these requirements and further integrates a cell-friendly shell in a bio-inspired approach. By taking advantage of a cell mechanism of biomolecule transport using vesicles, we engineered a hybrid biogenic nanoplatform able to encapsulate a set of nanoparticles regardless of their chemistry or shape.

View Article and Find Full Text PDF

Aim: Most of the research efforts in magnetic targeting have been focused on the development of magnetic nanovectors, while the investigation of methods for tracking their magnetic targeting efficiency remains inappropriately addressed. We propose herein a miniaturized approach for appraising magnetophoretic mobility at the nanoscale.

Materials & Methods: A simple and easy-to-use chamber including a microtip as a magnetic attractor was developed to perform magnetophoretic measurement at the size scale of nano-objects, and under bright field or fluorescence microscopy.

View Article and Find Full Text PDF

Purpose: Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress.

View Article and Find Full Text PDF

The controlled delivery of growth factors is a very challenging task because many different issues have to be addressed to develop the best suited system. A wide range of approaches have been employed for the controlled delivery of growth factors by hydrogels. Direct loading, electrostatic interaction, covalent binding, and the use of carriers are the main strategies presented in the literature.

View Article and Find Full Text PDF

This work evaluates an experimental set-up to coat superparamagnetic particles in order to protect them from gastric dissolution. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. Afterwards, an emulsification/cross-linking reaction was carried out in order to produce magnetic polymeric particles.

View Article and Find Full Text PDF

The recent development of superconducting magnets has resulted in a huge increase in human exposure to very large static magnetic fields of up to several teslas (T). Considering the rapid advances in applications and the great increases in the strength of magnetic fields used, especially in magnetic resonance imaging, safety concerns about magnetic field exposure have become a key issue. This paper points out some of these safety concerns and gives an overview of the findings about this theme, focusing mainly on mechanisms of magnetic field interaction with living organisms and the consequent effects.

View Article and Find Full Text PDF