The manufacture of single-use plastic items uses fossil fuels, and releases greenhouse gases. Plastic waste is also harmful to humans and wildlife. Recent attention towards the regulation or elimination of plastic straws has led to the development of many alternatives to single-use plastic straws, some intended to be disposed of immediately after use, and others to be cleaned and reused.
View Article and Find Full Text PDFIn a sensory or consumer setting, panelists are commonly asked to rank a set of stimuli, either by the panelist's liking of the samples, or by the samples' perceived intensity of a particular sensory note. Ranking is seen as a "simple" task for panelists, and thus is usually performed with minimal (or no) specific instructions given to panelists. Despite its common usage, seemingly little is known about the specific cognitive task that panelists are performing when ranking samples.
View Article and Find Full Text PDFProtein Eng Des Sel
December 2019
The Dynameomics project contains native state and unfolding simulations of 807 protein domains, where each domain is representative of a different metafold; these metafolds encompass ~97% of protein fold space. There is a long-standing question in structural biology as to whether proteins in the same fold family share the same folding/unfolding characteristics. Using molecular dynamics simulations from the Dynameomics project, we conducted a detailed study of protein unfolding/folding pathways for 5 protein domains from the immunoglobulin (Ig)-like β-sandwich metafold (the highest ranked metafold in our database).
View Article and Find Full Text PDFWithin every living organism, countless reactions occur every second. These reactions typically occur more rapidly and with greater efficiency than would be possible under the same conditions in the chemical laboratory, and while using only the subset of elements that are readily available in nature. Despite these apparent differences between life and the laboratory, biological reactions are governed by the same rules as any other chemical reaction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
On-demand local release of biomolecules enables fine-tuned stimulation for the next generation of neuromodulation therapies. Such chemical stimulation is achievable using iontronic devices based on microfabricated, highly selective ion exchange membranes (IEMs). Current limitations in processability and performance of thin film IEMs hamper future developments of this technology.
View Article and Find Full Text PDFTechnologies that restore or augment dysfunctional neural signaling represent a promising route to deeper understanding and new therapies for neurological disorders. Because of the chemical specificity and subsecond signaling of the nervous system, these technologies should be able to release specific neurotransmitters at specific locations with millisecond resolution. We have previously demonstrated an organic electronic lateral electrophoresis technology capable of precise delivery of charged compounds, such as neurotransmitters.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale.
View Article and Find Full Text PDFMany drugs provide their therapeutic action only at specific sites in the body, but are administered in ways that cause the drug's spread throughout the organism. This can lead to serious side effects. Local delivery from an implanted device may avoid these issues, especially if the delivery rate can be tuned according to the need of the patient.
View Article and Find Full Text PDFIn treating epilepsy, the ideal solution is to act at a seizure's onset, but only in the affected regions of the brain. Here, an organic electronic ion pump is demonstrated, which directly delivers on-demand pure molecules to specific brain regions. State-of-the-art organic devices and classical pharmacology are combined to control pathological activity in vitro, and the results are verified with electrophysiological recordings.
View Article and Find Full Text PDFThere are over 100 mutations in Cu/Zn superoxide dismutase (SOD1) that result in a subset of familial amyotrophic lateral sclerosis (fALS) cases. The hypothesis that dissociation of the dimer, misfolding of the monomer and subsequent aggregation of mutant SOD1 leads to fALS has been gaining support as an explanation for how these disparate missense mutations cause the same disease. These forms are only responsible for a fraction of the ALS cases; however, the rest are sporadic.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments.
View Article and Find Full Text PDFSmall β-hairpin peptides have been widely used as models for the folding of β-sheets. But how applicable is the folding of such models to β-structure in larger proteins with conventional hydrophobic cores? Here we present multiple unfolding simulations of three such proteins that contain the WW domain double hairpin β-sheet motif: cold shock protein A (CspA), cold shock protein B (CspB) and glucose permease IIA domain. We compare the behavior of the free motif in solution and in the context of proteins of different size and architecture.
View Article and Find Full Text PDFAll currently known structures of proteins together define 'protein fold space'. To increase the general understanding of protein dynamics and protein folding, we selected a set of 807 proteins and protein domains that represent 95% of the currently known autonomous folded domains present in globular proteins. Native state and unfolding simulations of these representatives are now complete and accessible via a novel database containing over 11 000 simulations.
View Article and Find Full Text PDFMotivation: The discovery of new protein folds is a relatively rare occurrence even as the rate of protein structure determination increases. This rarity reinforces the concept of folds as reusable units of structure and function shared by diverse proteins. If the folding mechanism of proteins is largely determined by their topology, then the folding pathways of members of existing folds could encompass the full set used by globular protein domains.
View Article and Find Full Text PDFThe goal of the Dynameomics project is to perform, store, and analyze molecular dynamics simulations of representative proteins, of all known globular folds, in their native state and along their unfolding pathways. To analyze unfolding simulations, the location of the protein along the unfolding reaction coordinate (RXN) must be determined. Properties such as the fraction of native contacts and radius of gyration are often used; however, there is an issue regarding degeneracy with these properties, as native and nonnative species can overlap.
View Article and Find Full Text PDFThe dynamic behavior of proteins is important for an understanding of their function and folding. We have performed molecular dynamics simulations of the native state and unfolding pathways of over 2000 protein/peptide systems (approximately 11,000 independent simulations) representing the majority of folds in globular proteins. These data are stored and organized using an innovative database approach, which can be mined to obtain both general and specific information about the dynamics and folding/unfolding of proteins, relevant subsets thereof, and individual proteins.
View Article and Find Full Text PDFThe Dynameomics project aims to simulate a representative sample of all globular protein metafolds under both native and unfolding conditions. We have identified protein unfolding transition state (TS) ensembles from multiple molecular dynamics simulations of high-temperature unfolding in 183 structurally distinct proteins. These data can be used to study individual proteins and individual protein metafolds and to mine for TS structural features common across all proteins.
View Article and Find Full Text PDFThe goal of Dynameomics is to perform atomistic molecular dynamics (MD) simulations of representative proteins from all known folds in explicit water in their native state and along their thermal unfolding pathways. Here we present 188-fold representatives and their native state simulations and analyses. These 188 targets represent 67% of all the structures in the Protein Data Bank.
View Article and Find Full Text PDFThe folding of WW domains is rate limited by formation of a beta-hairpin comprising residues from strands 1 and 2. Residues in the turn of this hairpin have reported Phi-values for folding close to 1 and have been proposed to nucleate folding. High Phi-values do not necessarily imply that the energetics of formation are a driving force for initiating folding.
View Article and Find Full Text PDFThe 37-residue Formin-binding protein, FBP28, is a canonical three-stranded beta-sheet WW domain. Because of its small size, it is so insensitive to chemical denaturation that it is barely possible to determine accurately a denaturation curve, as the transition spans 0-7 M guanidinium hydrochloride (GdmCl). It is also only marginally stable, with a free energy of denaturation of just 2.
View Article and Find Full Text PDF