Publications by authors named "Amanda J Edgley"

We previously reported that plasmalogens, a class of phospholipids, were decreased in a setting of dilated cardiomyopathy (DCM). Plasmalogen levels can be modulated via a dietary supplement called alkylglycerols (AG) which has demonstrated benefits in some disease settings. However, its therapeutic potential in DCM remained unknown.

View Article and Find Full Text PDF

Purpose: Cytotoxic agents such as mitomycin C (MMC) are part of the mainstay treatment for limiting subconjunctival scarring following glaucoma filtration surgery (GFS). However, a safer antifibrotic therapy is clinically needed. The anti-scarring properties of 3',4'-dihydroxyflavonol (DiOHF) were evaluated in a mouse model of GFS and in cultured human Tenon's fibroblasts (HTFs).

View Article and Find Full Text PDF

The uremic toxin indoxyl sulfate (IS), elevated in chronic kidney disease (CKD), is known to contribute towards progressive cardiovascular disease. IS activates the aryl hydrocarbon receptor (AhR) mediating oxidative stress and endothelial dysfunction via activation of the CYP1A1 pathway. The present study examines AhR inhibition with the antagonist, CH223191, on IS-mediated impairment of vascular endothelial function and disruption of redox balance.

View Article and Find Full Text PDF

Aims: Myocardial injury is a major contributor to left ventricular (LV) remodelling activating neurohormonal and inflammatory processes that create an environment of enhanced oxidative stress. This results in geometric and structural alterations leading to reduced LV systolic function. In this study we evaluated the efficacy of NP202, a synthetic flavonol, on cardiac remodelling in a chronic model of myocardial infarction (MI).

View Article and Find Full Text PDF

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of β-blocker or vehicle, utilising synchrotron-based microangiography in vivo.

View Article and Find Full Text PDF

Background: Cardiorenal syndrome (CRS) is a major health burden worldwide in need of novel therapies, as current treatments remain suboptimal. The present study assessed the therapeutic potential of apoptosis signal-regulating kinase 1 (ASK1) inhibition in a rat model of CRS.

Methods: Adult male Sprague-Dawley rats underwent surgery for myocardial infarction (MI) (week 0) followed by 5/6 subtotal nephrectomy (STNx) at week 4 to induce to induce a combined model of heart and kidney dysfunction.

View Article and Find Full Text PDF

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment.

View Article and Find Full Text PDF

Background: Among the growing numbers of patients with heart failure, up to one half have heart failure with preserved ejection fraction (HFpEF). The lack of effective treatments for HFpEF is a substantial and escalating unmet clinical need-and the lack of HFpEF-specific animal models represents a major preclinical barrier in advancing understanding of HFpEF. As established treatments for heart failure with reduced ejection fraction (HFrEF) have proven ineffective for HFpEF, the contention that the intrinsic cardiomyocyte phenotype is distinct in these 2 conditions requires consideration.

View Article and Find Full Text PDF

Reduced clearance of lipoproteins by HDL scavenger receptor class B1 (SR-B1) plays an important role in occlusive coronary artery disease. However, it is not clear how much microvascular dysfunction contributes to ischemic cardiomyopathy. Our aim was to determine the distribution of vascular dysfunction in vivo in the coronary circulation of male mice after brief exposure to Paigen high fat diet, and whether this vasomotor dysfunction involved nitric oxide (NO) and or endothelium derived hyperpolarization factors (EDHF).

View Article and Find Full Text PDF

Chronic intermittent hypoxia (IH) induces oxidative stress and inflammation, which impair vascular endothelial function. Long-term insulin resistance also leads to endothelial dysfunction. We determined, in vivo, whether the effects of chronic IH and insulin resistance on endothelial function augment each other.

View Article and Find Full Text PDF

Background: Impaired actin-myosin cross-bridge (CB) dynamics correlate with impaired left ventricular (LV) function in early diabetic cardiomyopathy (DCM). Elevated expression and activity of Rho kinase (ROCK) contributes to the development of DCM. ROCK targets several sarcomeric proteins including myosin light chain 2, myosin binding protein-C (MyBP-C), troponin I (TnI) and troponin T that all have important roles in regulating CB dynamics and contractility of the myocardium.

View Article and Find Full Text PDF

Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients. Independent of hypertension and coronary artery disease, diabetes is associated with a specific cardiomyopathy, known as diabetic cardiomyopathy (DCM). Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease, beginning early after the onset of type 1 and type 2 diabetes, ahead of left ventricular remodeling and overt diastolic dysfunction.

View Article and Find Full Text PDF

Objectives: Activation of RhoA/Rho-kinase (ROCK) is increasingly implicated in acute vasospasm and chronic vasoconstriction in major organ systems. Therefore we aimed to ascertain whether an increase in ROCK activity plays a role in the deterioration of coronary vascular function in early stage diabetes.

Methods: Synchrotron radiation microangiography was used to determine in vivo coronary responses in diabetic (3 weeks post streptozotocin 65 mg/kg ip) and vehicle treated male Sprague-Dawley rats (n = 8 and 6).

View Article and Find Full Text PDF

Diabetes is independently associated with a specific cardiomyopathy, characterized by impaired cardiac muscle relaxation and force development. Using synchrotron radiation small-angle x-ray scattering, this study investigated in the in situ heart and in real-time whether changes in cross-bridge disposition and myosin interfilament spacing underlie the early development of diabetic cardiomyopathy. Experiments were conducted using anesthetized Sprague-Dawley rats 3 weeks after treatment with either vehicle (control) or streptozotocin (diabetic).

View Article and Find Full Text PDF

Background: Pathological deposition of extracellular matrix in the non-infarct zone (NIZ) of the ventricle post myocardial infarction (MI) is a key contributor to cardiac remodeling and heart failure. FT011, a novel antifibrotic compound, was evaluated for its efficacy in neonatal cardiac fibroblasts (NCF) and in an experimental MI model.

Methods And Results: Collagen synthesis in NCF was determined by (3)H-proline incorporation following stimulation with TGF-β or angiotensin II (Ang II).

View Article and Find Full Text PDF

Aims: Cardiac remodelling in diabetes includes pathological accumulation of extracellular matrix and myocyte hypertrophy that contribute to heart dysfunction. Attenuation of remodelling represents a potential therapeutic target. We tested this hypothesis using a new anti-fibrotic drug, FT011 (Fibrotech Therapeutics Pty Ltd), on diabetic Ren-2 rats, a model which replicates many of the structural and functional manifestations of diabetic cardiomyopathy in humans.

View Article and Find Full Text PDF

Objective: In diabetes, long-term micro- and macrovascular damage often underlies the functional decline in the cardiovascular system. However, it remains unclear whether early-stage diabetes is associated with in vivo functional impairment in the coronary microvasculature. Synchrotron imaging allows us to detect and quantify regional differences in resistance microvessel caliber in vivo, even under conditions of high heart rate.

View Article and Find Full Text PDF

Chronic heart failure (CHF) is a growing health problem in developed nations. The pathological accumulation of extracellular matrix is a key contributor to CHF in both diabetic and nondiabetic states, resulting in progressive stiffening of the ventricular walls and loss of contractility. Proinflammatory disease processes, including inflammatory cytokine activation, contribute to accumulation of extracellular matrix in the heart.

View Article and Find Full Text PDF

Background: Diabetic cardiomyopathy (DCM) is an increasingly recognized cause of chronic heart failure amongst diabetic patients. Both increased reactive oxygen species (ROS) generation and impaired ROS scavenging have been implicated in the pathogenesis of hyperglycemia-induced left ventricular dysfunction, cardiac fibrosis, apoptosis and hypertrophy. We hypothesized that 3',4'-dihydroxyflavonol (DiOHF), a small highly lipid soluble synthetic flavonol, may prevent DCM by scavenging ROS, thus preventing ROS-induced cardiac damage.

View Article and Find Full Text PDF

Investigation into the molecular mechanisms regulating normal renal physiology and pathophysiology has benefited from the development of microdissection techniques enabling sampling of specific cell populations or structures within the kidney. Laser-capture microdissection and pressure catapulting is a relatively new, entirely non-contact microdissection technique that facilitates the assay of mRNA and protein expression in single nephron segments or populations. Herein, we describe methods for sample preparation, microdissection and collection of glomeruli from archival renal biopsies for later analysis of gene expression using real-time PCR.

View Article and Find Full Text PDF

Background: Activation of protein kinase C (PKC) has been implicated in the pathogenesis of diabetic nephropathy where therapy targeting the beta isoform of this enzyme is in advanced clinical development. However, PKC-beta is also increased in various forms of human glomerulonephritis with several potentially nephrotoxic factors, other than high glucose, resulting in PKC-beta activation. Accordingly, we sought to examine the effects of PKC-beta inhibition in a non-diabetic model of progressive kidney disease.

View Article and Find Full Text PDF

1. Real-time imaging of the vascular networks of any organ system in vivo is possible with synchrotron radiation (SR) angiography. In this review, we discuss the advantages of SR angiography over clinical X-ray imaging and other non-ionizing imaging modalities.

View Article and Find Full Text PDF