Publications by authors named "Amanda J Degraw"

Protein prenyltransferases catalyze the attachment of C15 (farnesyl) and C20 (geranylgeranyl) groups to proteins at specific sequences localized at or near the C-termini of specific proteins. Determination of the specific protein prenyltransferase substrates affected by the inhibition of these enzymes is critical for enhancing knowledge of the mechanism of such potential drugs. Here, we investigate the utility of alkyne-containing isoprenoid analogs for chemical proteomics experiments by showing that these compounds readily penetrate mammalian cells in culture and become incorporated into proteins that are normally prenylated.

View Article and Find Full Text PDF

The similarity ensemble approach (SEA) relates proteins based on the set-wise chemical similarity among their ligands. It can be used to rapidly search large compound databases and to build cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships one might not recognize based on sequence or structural similarities alone.

View Article and Find Full Text PDF

Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds.

View Article and Find Full Text PDF

Natural rubber, cis-1,4-polyisoprene, is a vital industrial material synthesized by plants via a side branch of the isoprenoid pathway by the enzyme rubber transferase. While the specific structure of this enzyme is not yet defined, based on activity it is probably a cis-prenyl transferase. Photoactive functionalized substrate analogues have been successfully used to identify isoprenoid-utilizing enzymes such as cis- and trans-prenyltransferases, and initiator binding of an allylic pyrophosphate molecule in rubber transferase has similar features to these systems.

View Article and Find Full Text PDF

A number of biochemical processes rely on isoprenoids, including the post-translational modification of signaling proteins and the biosynthesis of a wide array of compounds. Photoactivatable analogues have been developed to study isoprenoid utilizing enzymes such as the isoprenoid synthases and prenyltransferases. While these initial analogues proved to be excellent structural analogues with good cross-linking capability, they lack the stability needed when the goals include isolation of cross-linked species, tryptic digestion, and subsequent peptide sequencing.

View Article and Find Full Text PDF

Protein farnesyltransferase (PFTase) catalyzes the attachment of a geranylazide moiety to a peptide substrate, N-dansyl-GCVIA. Because geranylazide is actually a mixture of isomeric, interconverting primary and secondary azides, incorporation of this isoprenoid into peptides can potentially result in a corresponding mixture of prenylated peptides. Here, we first examined the reactivity of geranyl azide in a model Staudinger reaction and determined that a mixture of products is formed.

View Article and Find Full Text PDF