Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1-3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species.
View Article and Find Full Text PDFHigh-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible.
View Article and Find Full Text PDFThe NIAB_WW_SHW_NAM population, a large nested association mapping panel, is a useful resource for mapping QTL from synthetic hexaploid wheat that can improve modern elite wheat cultivars. The allelic richness harbored in progenitors of hexaploid bread wheat (Triticum aestivum L.) is a useful resource for addressing the genetic diversity bottleneck in modern cultivars.
View Article and Find Full Text PDFThree genotypes each of bread wheat, durum wheat and tritordeum were grown in randomized replicated field trials in Andalusia (Spain) for two years and wholemeal flours analysed for a range of components to identify differences in composition. The contents of all components that were determined varied widely between grain samples of the individual species and in most cases also overlapped between the three species. Nevertheless, statistically significant differences between the compositions of the three species were observed.
View Article and Find Full Text PDFFive cultivars of bread wheat and spelt and three of emmer were grown in replicate randomised field trials on two sites for two years with 100 and 200 kg nitrogen fertiliser per hectare, reflecting low input and intensive farming systems. Wholemeal flours were analysed for components that are suggested to contribute to a healthy diet. The ranges of all components overlapped between the three cereal types, reflecting the effects of both genotype and environment.
View Article and Find Full Text PDFGenome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.
View Article and Find Full Text PDFFANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene.
View Article and Find Full Text PDFThe bread wheat () pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced.
View Article and Find Full Text PDFSoil bioavailability of phosphorus (P) is a major concern for crop productivity worldwide. As phosphatic fertilizers are a non-renewable resource associated with economic and environmental issues so, the sustainable option is to develop P use efficient crop varieties. We phenotyped 82 diverse wheat (Triticum aestivum L.
View Article and Find Full Text PDFBread wheat (Triticum aestivum) is one of the world's most important crops; however, a low level of genetic diversity within commercial breeding accessions can significantly limit breeding potential. In contrast, wheat relatives exhibit considerable genetic variation and so potentially provide a valuable source of novel alleles for use in breeding new cultivars. Historically, gene flow between wheat and its relatives may have contributed novel alleles to the bread wheat pangenome.
View Article and Find Full Text PDFOne hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th.
View Article and Find Full Text PDFThirty-nine UK adapted wheat cultivars dating from between 1790 and 2012 were grown in replicated randomised field trials for three years, milled, and white flour analysed for the contents of dietary fibre components (arabinoxylan and β-glucan) and polar metabolites (sugars, amino acids, organic acids, choline and betaine) to determine whether the composition had changed due to the effects of intensive breeding. The concentrations of components varied between study years, indicating strong effects of environment. Nevertheless, some trends were observed, with the concentrations of arabinoxylan fibre and soluble sugars (notably sucrose, maltose and fructose) increasing and most amino acids (including asparagine which is the precursor of acrylamide formed during processing) decreasing between the older and newer types.
View Article and Find Full Text PDFMeiotic recombination plays a crucial role in the generation of new varieties. The effectiveness of recombination is limited by the distribution of crossover events, which in wheat and many other crops is skewed toward the distal regions of the chromosomes. Whole-genome sequencing of wheat has revealed that there are numerous important genes in the pericentromeric regions, which are inaccessible to manipulation due to the lack of crossover events.
View Article and Find Full Text PDFSegregation distortion is the phenomenon in which genotypes deviate from expected Mendelian ratios in the progeny of a cross between two varieties or species. There is not currently a widely used consensus for the appropriate statistical test, or more specifically the multiple testing correction procedure, used to detect segregation distortion for high-density single-nucleotide polymorphism (SNP) data. Here we examine the efficacy of various multiple testing procedures, including chi-square test with no correction for multiple testing, false-discovery rate correction and Bonferroni correction using an in-silico simulation of a biparental mapping population.
View Article and Find Full Text PDFCytogenetic analysis and array-based SNP genotyping of wheat- Th. intermedium introgression lines allowed identification of 634 chromosome-specific SNP markers across all twenty-one chromosomes of Th. intermedium (StJ J , 2 n = 6 x = 42).
View Article and Find Full Text PDFThe genus contains a diverse collection of wild species exhibiting variation in geographical distribution, ecological adaptation, ploidy and genome organization. is the most closely related genus to which includes cultivated wheat, a globally important crop that has a limited gene pool for modern breeding. species are a potential future resource for wheat breeding for traits, such as adaptation to different ecological conditions and pest and disease resistance.
View Article and Find Full Text PDFBackground And Aims: Bread wheat (Triticum aestivum) has been through a severe genetic bottleneck as a result of its evolution and domestication. It is therefore essential that new sources of genetic variation are generated and utilized. This study aimed to generate genome-wide introgressed segments from Aegilops speltoides.
View Article and Find Full Text PDFGenome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome. Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance.
View Article and Find Full Text PDFWheat breeders and academics alike use single nucleotide polymorphisms (SNPs) as molecular markers to characterize regions of interest within the hexaploid wheat genome. A number of SNP-based genotyping platforms are available, and their utility depends upon factors such as the available technologies, number of data points required, budgets and the technical expertise required. Unfortunately, markers can rarely be exchanged between existing and newly developed platforms, meaning that previously generated data cannot be compared, or combined, with more recently generated data sets.
View Article and Find Full Text PDFBackground And Aims: The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer.
View Article and Find Full Text PDFThe importance of wheat as a food crop makes it a major target for agricultural improvements. As one of the most widely grown cereal grains, together with maize and rice, wheat is the leading provider of calories in the global diet, constituting 29% of global cereal production in 2015. In the last few decades, however, yields have plateaued, suggesting that the green revolution, at least for wheat, might have run its course and that new sources of genetic variation are urgently required.
View Article and Find Full Text PDFTargeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat.
View Article and Find Full Text PDF