Publications by authors named "Amanda J Brosnahan"

This article describes the implementation of the Staph Study, a sustainable, ongoing, scalable research study conducted with undergraduate students. The study characterizes Staphylococcus aureus specimens collected from the anterior nares of healthy members of our campus community. The ease with which we have been able to involve many students in the project has resulted in a significant increase in the research opportunities for undergraduates in our Science Department.

View Article and Find Full Text PDF

Mucosal and skin tissues form barriers to infection by most bacterial pathogens. causes diseases across these barriers in part dependent on the proinflammatory properties of superantigens. We showed, through use of a CRISPR-Cas9 CD40 knockout, that the superantigens toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins (SEs) B and C stimulated chemokine production from human vaginal epithelial cells (HVECs) through human CD40.

View Article and Find Full Text PDF

Superantigens secreted by Staphylococcus aureus and Streptococcus pyogenes interact with the T-cell receptor and major histocompatibility class II molecules on antigen-presenting cells to elicit a massive cytokine release and activation of T cells in higher numbers than that seen with ordinary antigens. Because of this unique ability, superantigens have been implicated as etiological agents for many different types of diseases, including toxic shock syndrome, infective endocarditis, pneumonia, and inflammatory skin diseases. This review covers the main animal models that have been developed in order to identify the roles of superantigens in human disease.

View Article and Find Full Text PDF

Epithelial cells represent the first line of host immune defense at mucosal surfaces. Although opioids appear to increase host susceptibility to infection, no studies have examined opioid effects on epithelial immune functions. We tested the hypothesis that morphine alters vectorial cytokine secretion from intestinal epithelial cell (IPEC-J2) monolayers in response to enteropathogens.

View Article and Find Full Text PDF

The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome.

View Article and Find Full Text PDF

The vaginal epithelium provides a barrier to pathogens and recruits immune defenses through the secretion of cytokines and chemokines. Several studies have shown that mucosal sites are innervated by norepinephrine-containing nerve fibers. Here we report that norepinephrine potentiates the proinflammatory response of human vaginal epithelial cells to products produced by Staphylococcus aureus, a pathogen that causes menstrual toxic shock syndrome.

View Article and Find Full Text PDF

Staphylococcus aureus causes significant illnesses throughout the world, including toxic shock syndrome (TSS), pneumonia, and infective endocarditis. Major contributors to S. aureus illnesses are secreted virulence factors it produces, including superantigens and cytolysins.

View Article and Find Full Text PDF

IPEC-J2 cells are porcine intestinal columnar epithelial cells that were isolated from neonatal piglet mid-jejunum. This cell line forms polarized monolayers with high transepithelial electrical resistance when cultured on 0.4 μm pore-size filters.

View Article and Find Full Text PDF

Staphylococcus aureus and Streptococcus pyogenes (group A streptococci) are Gram-positive pathogens capable of producing a variety of bacterial exotoxins known as superantigens. Superantigens interact with antigen-presenting cells (APCs) and T cells to induce T cell proliferation and massive cytokine production, which leads to fever, rash, capillary leak and subsequent hypotension, the major symptoms of toxic shock syndrome. Both S.

View Article and Find Full Text PDF

Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)-rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry.

View Article and Find Full Text PDF

Staphylococcus aureus and Streptococcus pyogenes colonize mucosal surfaces of the human body to cause disease. A group of virulence factors known as superantigens are produced by both of these organisms that allows them to cause serious diseases from the vaginal (staphylococci) or oral mucosa (streptococci) of the body. Superantigens interact with T cells and APCs to cause massive cytokine release to mediate the symptoms collectively known as toxic shock syndrome.

View Article and Find Full Text PDF

Superantigens interact with T lymphocytes and macrophages to cause T lymphocyte proliferation and overwhelming cytokine production, which lead to toxic shock syndrome. Staphylococcus aureus superantigen toxic shock syndrome toxin-1 is a major cause of menstrual toxic shock syndrome. In general, superantigen-secreting S.

View Article and Find Full Text PDF

Glycerol monolaurate (GML) is a fatty acid monoester that inhibits growth and exotoxin production of vaginal pathogens and cytokine production by vaginal epithelial cells. Because of these activities, and because of the importance of cytokine-mediated immune activation in human immunodeficiency virus type 1 (HIV-1) transmission to women, our laboratories are performing studies on the potential efficacy of GML as a topical microbicide to interfere with HIV-1 transmission in the simian immunodeficiency virus-rhesus macaque model. While GML is generally recognized as safe by the FDA for topical use, its safety for chronic use and effects on normal vaginal microflora in this animal model have not been evaluated.

View Article and Find Full Text PDF

Prior studies suggest Staphylococcus aureus exotoxins are not produced when the organism is cultured in human blood. Human blood was fractionated into plasma and water-lysed red blood cells, and it was demonstrated that mixtures of alpha and beta globins of hemoglobin (as low as 1 mug/mL) inhibited S. aureus exotoxin production while increasing production of protein A and not affecting bacterial growth.

View Article and Find Full Text PDF