NF-(kappa)B is an important component of both autoimmunity and bone destruction in RA. NF-(kappa)B-inducing kinase (NIK) is a key mediator of the alternative arm of the NF-(kappa)B pathway, which is characterized by the nuclear translocation of RelB/p52 complexes. Mice lacking functional NIK have no peripheral lymph nodes, defective B and T cells, and impaired receptor activator of NF-kappaB ligand-stimulated osteoclastogenesis.
View Article and Find Full Text PDFThe prototranscription factor p100 represents an intersection of the NF-kappaB and IkappaB families, potentially serving as both the precursor for the active NF-kappaB subunit p52 and as an IkappaB capable of retaining NF-kappaB in the cytoplasm. NF-kappaB-inducing kinase (NIK) controls processing of p100 to generate p52, and thus NIK-deficient mice can be used to examine the biological effects of a failure in such processing. We demonstrate that treatment of wild-type osteoclast precursors with the osteoclastogenic cytokine receptor activator of NF-kappaB ligand (RANKL) increases both expression of p100 and its conversion to p52, resulting in unchanged net levels of p100.
View Article and Find Full Text PDF