Publications by authors named "Amanda H Chan"

Article Synopsis
  • Mutations in the RBM20 cardiac splicing factor are linked to malignant dilated cardiomyopathy (DCM), and engineered isogenic iPSCs were used to study this condition.
  • iPSC-derived heart tissues displayed contractile dysfunction, with missense mutations resulting in more severe effects compared to RBM20 knockout lines.
  • Analysis of the mutant RBM20 revealed altered RNA binding, unique gene expression defects, and a tendency to localize in the cytoplasm with stress granule interactions, indicating a complex mechanism underlying cardiac disease.
View Article and Find Full Text PDF

Genome editing holds great promise for experimental biology and potential clinical use. To successfully utilize genome editing, it is critical to sensitively detect and quantify its outcomes: homology-directed repair (HDR) and nonhomologous end joining (NHEJ). This has been difficult at endogenous gene loci and instead is frequently done using artificial reporter systems.

View Article and Find Full Text PDF

This protocol is designed to detect single-nucleotide substitutions generated by genome editing in a highly sensitive and quantitative manner. It uses a combination of allele-specific hydrolysis probes and a new digital polymerase chain reaction (dPCR) technology called droplet digital PCR (ddPCR). ddPCR partitions a reaction into more than 10,000 nanoliter-scale water-in-oil droplets.

View Article and Find Full Text PDF

The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR).

View Article and Find Full Text PDF

Precise genome-editing relies on the repair of sequence-specific nuclease-induced DNA nicking or double-strand breaks (DSBs) by homology-directed repair (HDR). However, nonhomologous end-joining (NHEJ), an error-prone repair, acts concurrently, reducing the rate of high-fidelity edits. The identification of genome-editing conditions that favor HDR over NHEJ has been hindered by the lack of a simple method to measure HDR and NHEJ directly and simultaneously at endogenous loci.

View Article and Find Full Text PDF

Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes.

View Article and Find Full Text PDF

Precise editing of human genomes in pluripotent stem cells by homology-driven repair of targeted nuclease-induced cleavage has been hindered by the difficulty of isolating rare clones. We developed an efficient method to capture rare mutational events, enabling isolation of mutant lines with single-base substitutions without antibiotic selection. This method facilitates efficient induction or reversion of mutations associated with human disease in isogenic human induced pluripotent stem cells.

View Article and Find Full Text PDF