Publications by authors named "Amanda Emirandetti"

Background: Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC) and embryonic neural stem cell (NSC) cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca(2+)-imaging or electrophysiology.

View Article and Find Full Text PDF

Background: Astrocytes play a major role in preserving and restoring structural and physiological integrity following injury to the nervous system. After peripheral axotomy, reactive gliosis propagates within adjacent spinal segments, influenced by the local synthesis of nitric oxide (NO). The present work investigated the importance of inducible nitric oxide synthase (iNOS) activity in acute and late glial responses after injury and in major histocompatibility complex class I (MHC I) expression and synaptic plasticity of inputs to lesioned alpha motoneurons.

View Article and Find Full Text PDF

The success of axonal regeneration has been attributed to a co-operation between the severed neurons and the surrounding environment, including non-neuronal cells and the extracellular matrix. Important differences regarding the regeneration potential after injury have been described among inbred mice strains. To date, there is only limited knowledge of how such variation can be linked with the genetic background.

View Article and Find Full Text PDF

Although synaptic plasticity is a widespread phenomenon, the underlying mechanisms leading to its occurrence are virtually unknown. In this sense, glial cells, especially astrocytes, may have a role in network changes of the nervous system, influencing the retraction of boutons as well as providing a proper perisynaptic environment, thereby affecting the replacement of inputs. Interestingly, the glial reaction does vary between strains of rats and mice.

View Article and Find Full Text PDF