Objective: The objective of this study was to compare the vertical (vGRF), anterior-posterior (apGRF), and medial-lateral (mlGRF) ground reaction force (GRF) profiles throughout the stance phase of gait (1) between individuals 6 to 12 months post-anterior cruciate ligament reconstruction (ACLR) and uninjured matched controls and (2) between ACLR and individuals with differing radiographic severities of knee osteoarthritis (KOA), defined as Kellgren and Lawrence (KL) grades KL2, KL3, and KL4.
Methods: A total of 196 participants were included in this retrospective cross-sectional analysis. Gait biomechanics were collected from individuals 6 to 12 months post-ACLR (n = 36), uninjured controls matched to the ACLR group (n = 36), and individuals with KL2 (n = 31), KL3 (n = 67), and KL4 osteoarthritis (OA) (n = 26).
Purpose: To determine associations between immediate and delayed response of serum cartilage oligomeric matrix protein (sCOMP) to loading (i.e., 3000 walking steps) and femoral cartilage interlimb T1ρ relaxation times in individual's post-anterior cruciate ligament reconstruction (ACLR).
View Article and Find Full Text PDFBackground: Ultrasonography is capable of detecting morphological changes in femoral articular cartilage cross-sectional area in response to an acute bout of walking; yet, the response of femoral cartilage cross-sectional area varies between individuals. It is hypothesized that differences in joint kinetics may influence the response of cartilage to a standardized walking protocol. Therefore, the study purpose was to compare internal knee abduction and extension moments between individuals with anterior cruciate ligament reconstruction who demonstrate an acute increase, decrease, or unchanged medial femoral cross-sectional area response following 3000 steps.
View Article and Find Full Text PDFFaster walking speeds increase the demand on quadriceps muscles to produce adequate force to decelerate body mass and control knee flexion. Quadriceps fascicle behavior (i.e.
View Article and Find Full Text PDFInsufficient quadriceps force production and altered knee joint biomechanics after anterior cruciate ligament reconstruction (ACLR) may contribute to a heightened risk of osteoarthritis. Quadriceps muscle lengthening dynamics affect force production and knee joint loading; however, no study to our knowledge has quantified in vivo quadriceps dynamics during walking in individuals with ACLR or examined correlations with joint biomechanics. Our purpose was to quantify bilateral vastus lateralis (VL) fascicle length change and the association thereof with gait biomechanics during weight acceptance in individuals with ACLR.
View Article and Find Full Text PDFIndividuals with knee joint pathologies exhibit quadriceps dysfunction that, during walking, manifests as smaller peak knee extensor moment (pKEM) and reduced knee flexion excursion. These changes persist despite muscle strengthening and may alter stance phase knee joint loading considered relevant to osteoarthritis risk. Novel rehabilitation strategies that more directly augment quadriceps mechanical output during functional movements are needed to reduce this risk.
View Article and Find Full Text PDF