Background: The spinal cord is limited in its capacity to repair after damage caused by injury or disease. However, propriospinal (PS) neurons in the spinal cord have demonstrated a propensity for axonal regeneration after spinal cord injury. They can regrow and extend axonal projections to re-establish connections across a spinal lesion.
View Article and Find Full Text PDFChondroitin sulfate proteoglycans (CSPGs) are widely expressed in the normal central nervous system, serving as guidance cues during development and modulating synaptic connections in the adult. With injury or disease, an increase in CSPG expression is commonly observed close to lesioned areas. However, these CSPG deposits form a substantial barrier to regeneration and are largely responsible for the inability to repair damage in the brain and spinal cord.
View Article and Find Full Text PDFWe have previously shown that a small percentage of long descending propriospinal tract (LDPT) axons are spared, whereas few short thoracic propriospinal (TPS) fibers survive 2 weeks following severe (50 mm weight drop) low thoracic spinal cord contusion injury (SCI). Here, we extended those findings to a moderate (25 mm weight drop) T9 SCI and assessed the effects of this lesion severity on propriospinal tract fibers at different time periods after injury. We anterogradely labeled fibers with fluororuby (FR) or WGA-HRP to determine their location and number 2, 4, 6, and 16 weeks post-SCI.
View Article and Find Full Text PDF