Publications by authors named "Amanda Clouser"

Background: Lead encephalopathy, while thankfully rare, is a devastating and potentially fatal consequence of lead intoxication. Owing to successful public health measures, severe lead toxicity is not often encountered by most practicing physicians in the United States, making both its recognition and management challenging. A case study of a 4-year-old female presenting in refractory status epilepticus, found to have severe microcytic anemia and lead level > 100 mcg/dL.

View Article and Find Full Text PDF

Objective: The primary objective was to evaluate the effect of parenteral potassium chloride (KCl) supplementation on potassium (K) concentrations in a non-cardiac pediatric population. Secondary outcomes were to identify variables that may influence response to KCl supplementation (i.e.

View Article and Find Full Text PDF

The ABC efflux pump P-glycoprotein (P-gp) transports a wide variety of drugs and is inhibited by others. Some drugs stimulate ATP hydrolysis at the nucleotide binding domains (NBDs) and are transported, others uncouple ATP hydrolysis and transport, and others inhibit ATP hydrolysis. The molecular basis for the different behavior of these drugs is not well understood despite the availability of several structural models of P-gp complexes with ligands bound.

View Article and Find Full Text PDF

P-Glycoprotein (P-gp) is an ATP-dependent efflux pump that clears a wide variety of drugs and toxins from cells. P-gp undergoes large-scale structural changes and demonstrates conformational heterogeneity even within a single catalytic or drug-bound state, although the role of heterogeneity remains unclear. P-gp is found in a variety of cell types that vary in lipid composition, which modulates its activity.

View Article and Find Full Text PDF

Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD).

View Article and Find Full Text PDF

Small heat shock proteins (sHSPs) are nature's 'first responders' to cellular stress, interacting with affected proteins to prevent their aggregation. Little is known about sHSP structure beyond its structured α-crystallin domain (ACD), which is flanked by disordered regions. In the human sHSP HSPB1, the disordered N-terminal region (NTR) represents nearly 50% of the sequence.

View Article and Find Full Text PDF

Hydrogen deuterium exchange mass spectrometry (H/DX MS) provides a quantitative comparison of the relative rates of exchange of amide protons for solvent deuterons. In turn, the rate of amide exchange depends on a complex combination of the stability of local secondary structure, solvent accessibility, and dynamics. H/DX MS has, therefore, been widely used to probe structure and function of soluble proteins, but its application to membrane proteins was limited previously to detergent solubilized samples.

View Article and Find Full Text PDF

The microtubule-associated protein tau forms insoluble, amyloid-type aggregates in various dementias, most notably Alzheimer's disease. Cellular chaperone proteins play important roles in maintaining protein solubility and preventing aggregation in the crowded cellular environment. Although tau is known to interact with numerous chaperones, it remains unclear how these chaperones function mechanistically to prevent tau aggregation and how chaperones from different classes compare in terms of mechanism.

View Article and Find Full Text PDF

The holdase activity and oligomeric propensity of human small heat shock proteins (sHSPs) are regulated by environmental factors. However, atomic-level details are lacking for the mechanisms by which stressors alter sHSP responses. We previously demonstrated that regulation of HSPB5 is mediated by a single conserved histidine over a physiologically relevant pH range of 6.

View Article and Find Full Text PDF

We recently described general principles for designing ideal protein structures stabilized by completely consistent local and nonlocal interactions. The principles relate secondary structure patterns to tertiary packing motifs and enable design of different protein topologies. To achieve fine control over protein shape and size within a particular topology, we have extended the design rules by systematically analyzing the codependencies between the lengths and packing geometry of successive secondary structure elements and the backbone torsion angles of the loop linking them.

View Article and Find Full Text PDF

Small heat shock proteins (sHSP) are a class of ATP-independent protein chaperones found throughout nature. They share a common ability to maintain partly unfolded proteins in soluble states under cellular stress conditions. All sHSPs contain a central domain called the α-crystallin domain (ACD); the domain is found in all sHSPs and in no other proteins and therefore defines the family.

View Article and Find Full Text PDF