Purpose: The objective of this study was to develop a linear accelerator (LINAC)-based adaptive radiation therapy (ART) workflow for the head and neck that is informed by automated image tracking to identify major anatomic changes warranting adaptation. In this study, we report our initial clinical experience with the program and an investigation into potential trigger signals for ART.
Methods And Materials: Offline ART was systematically performed on patients receiving radiation therapy for head and neck cancer on C-arm LINACs.
During radiation therapy (RT) of head and neck (HN) cancer, the shape and volume of the parotid glands (PG) may change significantly, resulting in clinically relevant deviations of delivered dose from the planning dose. Early and accurate longitudinal prediction of PG anatomical changes during the RT can be valuable to inform decisions on plan adaptation. We developed a deep neural network for longitudinal predictions using the displacement fields (DFs) between the planning computed tomography (pCT) and weekly cone beam computed tomography (CBCT).
View Article and Find Full Text PDF